Refine Your Search

Search Results

Technical Paper

Influence of Injection Timing on Equivalence Ratio Stratification of Methanol and Isooctane in a Heavy-Duty Compression Ignition Engine

2020-09-15
2020-01-2069
CO2 is a greenhouse gas that is believed to be one of the main contributors to global warming. Recent studies show that a combination of methanol as a renewable fuel and advanced combustion concepts could be a promising future solution to alleviate this problem. However, high unburned hydrocarbon (UHC) and carbon monoxide (CO) emissions can be stated as the main drawback in low load operations when using methanol under advanced combustion concepts. This issue can be mitigated by modifying the stratification of the local equivalence ratio to achieve a favorable level. The stratifications evolved, and the regimes that can simultaneously produce low emissions, and high combustion efficiency can be identified by sweeping the injection timing from homogeneous charge compression ignition (HCCI) to partially premixed combustion (PPC). Understanding how the stratification of the local equivalence ratio for methanol evolves during the sweep is essential to gain these benefits.
Journal Article

Transition from HCCI to PPC: Investigation of Fuel Distribution by Planar Laser Induced Fluorescence (PLIF)

2017-03-28
2017-01-0748
In a previous study, in order to investigate the effect of charge stratification on combustion behavior such as combustion efficiency and combustion phasing which also largely affects the emissions, an experiment was conducted in a heavy-duty compression ignition (CI) metal engine. The engine behavior and emission characteristics were studied in the transition from HCCI mode to PPC mode by varying the start of injection (SOI) timing. To gain more detailed information of the mixing process, in-cylinder laser diagnostic measurements, namely fuel-tracer planar laser induced fluorescence (PLIF) imaging, were conducted in an optical version of the heavy-duty CI engine mentioned above. To the authors’ best knowledge, this is the first time to perform fuel-tracer PLIF measurements in an optical engine with a close to production bowl in piston combustion chamber, under transition conditions from HCCI to PPC mode.
Technical Paper

Transition from HCCI to PPC: Investigation of the Effect of Different Injection Timing on Ignition and Combustion Characteristics in an Optical PPC Engine

2020-04-14
2020-01-0559
The partially premixed combustion (PPC) concept is regarded as an intermediate process between the thoroughly mixed Homogeneous charge compression ignition (HCCI) combustion and compression ignition (CI) combustion. It’s a combination of auto-ignition mode, a fuel-rich premixed combustion mode, and a diffusion combustion mode. The concept has both high efficiency and low soot emission due to low heat losses and less stratified fuel and air mixtures compared to conventional diesel CI. The mechanisms behind the combustion process are not yet very well known. This work focuses on the efficiency and the in-cylinder process in terms of fuel distribution and the initial phase of the combustion. More specifically, double injection strategies are compared with single injection strategies to achieve different levels of stratification, ranging from HCCI to PPC like combustion as well as poor (43%) to good (49%) of gross indicated efficiency.
Journal Article

Ethanol-Diesel Fumigation in a Multi-Cylinder Engine

2008-04-14
2008-01-0033
Fumigation was studied in a 12 L six-cylinder heavy-duty engine. Port-injected ethanol was ignited with a small amount of diesel injected into the cylinder. The setup left much freedom for influencing the combustion process, and the aim of this study was to find operation modes that result in a combustion resembling that of a homogeneous charge compression ignition (HCCI) engine with high efficiency and low NOx emissions. Igniting the ethanol-air mixture using direct-injected diesel has attractive properties compared to traditional HCCI operation where the ethanol is ignited by pressure alone. No preheating of the mixture is required, and the amount of diesel injected can be used to control the heat release rate. The two fuel injection systems provide a larger flexibility in extending the HCCI operating range to low and high loads. It was shown that cylinder-to-cylinder variations present a challenge for this type of combustion.
Journal Article

Investigation of the Combustion Characteristics with Focus on Partially Premixed Combustion in a Heavy Duty Engine

2008-06-23
2008-01-1658
Partially Premixed Combustion (PPC) has shown its potential by combining high combustion controllability with emission characteristics that are close to those of an HCCI engine. In order to get PPC the ignition delay needs to be long enough for the fuel and air to mix prior to combustion. This can be achieved by injecting the fuel sufficiently early while running with high EGR. In order to find out where and how PPC occurs a map that shows the changes in combustion characteristics with injection timing and EGR was created. The combustion characteristics were studied in a six cylinder heavy duty engine where the Start of Injection (SOI) was swept from early to late injection over a wide range of EGR levels. The emissions were monitored during the sweeps and in the most promising regions, with low emissions and high efficiency, additional changes in injection pressure and engine speed were applied to get a more versatile picture of the combustion.
Journal Article

Pressure Sensitivity of HCCI Auto-Ignition Temperature for Primary Reference Fuels

2012-04-16
2012-01-1128
Some fuels with the same research octane number (RON) have different HCCI engine performance. Therefore RON alone cannot be used for determining auto-ignition in HCCI combustion. The current research focuses on creating an HCCI fuel index suitable for comparing different fuels for HCCI operation. More thorough studies are needed to map the fuel effects. One way to characterize a fuel is by using the Auto-Ignition Temperature (AIT). The AIT and the amount of Low Temperature Heat Release (LTHR) together describe the auto-ignition properties of the fuel. Both can be extracted from the pressure trace. The assumption is that the pressure and temperature are known at inlet valve closing (IVC) and that the mass in the cylinder does not change after IVC. The purpose of this study was to map the AIT of different Primary Reference Fuels (PRF) for HCCI combustion at different cylinder pressures.
Technical Paper

The Effect of Swirl on Spark Assisted Compression Ignition (SACI)

2007-07-23
2007-01-1856
Auto ignition with SI compression ratio can be achieved by retaining hot residuals, replacing some of the fresh charge. In this experimental work it is achieved by running with a negative valve overlap (NVO) trapping hot residuals. The experimental engine is equipped with a pneumatic valve train making it possible to change valve lift, phasing and duration, as well as running with valve deactivation. This makes it possible to start in SI mode, and then by increasing the NVO, thus raising the initial charge temperature it is possible to investigate the intermediate domain between SI and HCCI. The engine is then running in spark assisted HCCI mode, or spark assisted compression ignition (SACI) mode that is an acronym that describes the combustion on the borderline between SI and HCCI. In this study the effect of changing the in-cylinder flow pattern by increased swirl is studied. This is achieved by deactivating one of the two intake valves.
Technical Paper

Two-Dimensional Temperature Measurements in Engine Combustion Using Phosphor Thermometry

2007-07-23
2007-01-1883
A phosphor thermometry, for measurements of two-dimensional gas-phase temperature was examined in turbulent combustion in an engine. The reasonable temperature deviation and the agreement with calculated data within 5% precision were achieved by single-shot images in the ignition process of compression ignition engine. Focusing on the local flame kernel, the flame structure could be quantitatively given by the temperature. It became evident that the HCCI flame kernels had 1-3 mm diameter and the isolated island structures. Subsequently, the HTR zone consisted of the combined flame kernels near TDC.
Technical Paper

Investigation of the Early Flame Development in Spark Assisted HCCI Combustion Using High Speed Chemiluminescence Imaging

2007-04-16
2007-01-0212
Auto-ignition with SI-compression ratio can be achieved by replacing some of the fresh charge by hot residuals. In this work an engine is run with a negative valve overlap (NVO) trapping hot residuals. By increasing the NVO, thus raising the initial charge temperature it is possible to investigate the intermediate zone between SI and HCCI as the amount of residuals is increased. Recent research has shown the potential of using spark assistance to aid gasoline HCCI combustion at some operating conditions, and even extend the operating regime into regions where unsupported HCCI combustion is impossible. In this work the influence of the spark is studied in a single cylinder operated engine with optical access. Combustion is monitored by in-cylinder pressure and simultaneous high speed chemiluminescence imaging. It is seen that even for large NVO and thus high residual fractions it is a growing SI flame that interacts with, and governs the subsequent HCCI combustion.
Technical Paper

HCCI Combustion of Natural Gas and Hydrogen Enriched Natural Gas Combustion Control by Early Direct Injection of Diesel Oil and RME

2008-06-23
2008-01-1657
Natural gas and hydrogen enriched natural gas has been tested as fuels together with diesel oil and RME in a single cylinder Scania research engine. The gas was introduced as port injection while the diesel was introduced as early direct injection. Because the gas was premixed with air before combustion and the diesel was injected early in the compression stroke, the engine ran close to HCCI mode. However, a more precise description of the combustion would be PPC (Partially Premixed Combustion) as the diesel oil was not expected to be totally premixed. The experiments revealed that the combustion phasing could successfully be controlled by the amount of diesel oil injected for loads between 3.5 and 7.5 bar IMEPg at 1200 rpm. For a given combustion phasing, the hydrogen was not found to influence the required amount of diesel noticeable. However, a large difference between the RME and diesel oil could be seen by the necessity to inject more RME to obtain the same combustion phasing.
Technical Paper

Quantitative Analysis of the Relation between Flame Structure and Turbulence in HCCI Combustion by Two-Dimensional Temperature Measurement

2008-04-14
2008-01-0061
The structure of HCCI (homogeneous charge compression ignition) combustion flames was quantitatively analyzed by measuring the two-dimensional gas temperature distribution using phosphor thermometry. It was found from the relation between a turbulent Reynolds number and Karlovitz number that, when compared with the flame propagation in an S.I. engine, HCCI combustion has a wider flame structure with respect to the turbulence scale. As a result of our experimentation for the influence of low temperature reaction (LTR) using two types of fuel, it was also confirmed that different types of fuel produce different histories of flame kernel structure.
Technical Paper

HCCI Operating Range in a Turbo-charged Multi Cylinder Engine with VVT and Spray-Guided DI

2009-04-20
2009-01-0494
Homogenous charge compression ignition (HCCI) has been identified as a promising way to increase the efficiency of the spark-ignited engine, while maintaining low emissions. The challenge with HCCI combustion is excessive pressure rise rate, quantified here with Ringing Intensity. Turbocharging enables increased dilution of the charge and thus a reduction of the Ringing Intensity. The engine used is an SI four cylinder base with 2.2L displacement and is equipped with a turbocharger. Combustion phasing control is achieved with individual intake/ exhaust cam phasing. Fuel injection with spray guided design is used. Cycle resolved combustion state is monitored and used for controlling the engine either in closed or open loop where balancing of cylinder to cylinder variations has to be done to run the engine at high HCCI load. When load is increased the NOx levels rise, the engine is then run in stoichiometric HCCI mode to be able to use a simple three-way catalyst.
Technical Paper

Study of Fuel Stratification on Spark Assisted Compression Ignition (SACI) Combustion with Ethanol Using High Speed Fuel PLIF

2008-10-06
2008-01-2401
An engine can be run in Homogenous Charge Compression Ignition (HCCI) mode by applying a negative valve overlap, thus trapping hot residuals so as to achieve an auto-ignition temperature. By employing spark assistance, the engine can be operated in what is here called Spark Assisted Compression Ignition (SACI) with ethanol as fuel. The influence of fuel stratification by means of port fuel injection as well as in combination with direct injection was investigated. A high-speed multi-YAG laser system and a framing camera were utilized to capture planar laser-induced fluorescence (PLIF) images of the fuel distribution. The charge homogeneity in terms of fuel distribution was evaluated using a homogeneity index calculated from the PLIF images. The homogeneity index showed a higher stratification for increased proportions of direct-injected fuel. It was found that charge stratification could be achieved through port fuel injection in a swirling combustion system.
Technical Paper

Studying the potential efficiency of low heat rejection HCCI engines with a Stochastic Reactor Model

2009-09-13
2009-24-0032
The main losses in internal combustion engines are the heat losses to the cylinder walls and to the exhaust gases. Adiabatic, or low heat rejection engines, have received interest and been studied in several periods in history. Typically, however, these attempts have had to be abandoned when problems with lubrication and overheating components could not be solved satisfactorily. The latest years have seen the emerging of low temperature combustion in engines as well as computational powers that provide new options for highly efficient engines with low heat rejection. Stochastic Reactor Models (SRM) are highly efficient in modeling the kinetics decided low temperature combustion in HCCI and PPC engines. Containing the means to define the variations within the cylinder while employing detailed chemistry, micro mixing and heat transfer modeling, the interaction between heat transfer, exhaust gas energy and the combustion process can be studied with the SRM.
Technical Paper

HCCI Heat Release Data for Combustion Simulation, Based on Results from a Turbocharged Multi Cylinder Engine

2010-05-05
2010-01-1490
When simulating homogenous charge compression ignition or HCCI using one-dimensional models it is important to have the right combustion parameters. When operating in HCCI the heat release parameters will have a high influence on the simulation result due to the rapid combustion rate, especially if the engine is turbocharged. In this paper an extensive testing data base is used for showing the combustion data from a turbocharged engine operating in HCCI mode. The experimental data cover a wide range, which span from 1000 rpm to 3000 rpm and engine loads between 100 kPa up to over 600 kPa indicated mean effective pressure in this engine speed range. The combustion data presented are: used combustion timing, combustion duration and heat release rate. The combustion timing follows the load and a trend line is presented that is used for engine simulation. The combustion duration in time is fairly constant at different load and engine speeds for the chosen combustion timings here.
Technical Paper

Effects of Negative Valve Overlap on the Auto-ignition Process of Lean Ethanol/Air Mixture in HCCI-Engines

2010-10-25
2010-01-2235
This paper presents a computational study of the effects of fuel and thermal stratifications on homogenous charge compression ignition (HCCI) combustion process in a personal car sized internal combustion engine. Stratified HCCI conditions are generated using a negative valve overlap (NVO) technique. The aims of this study are to improve the understanding of the flow dynamics, the heat and mass transfer process and the onset of auto-ignition in stratified charges under different internal EGR rate and NVO conditions. The fuel is ethanol supplied through port-fuel injection; the fuel/air mixture is assumed to be homogenous before discharging to the cylinder. Large eddy simulation (LES) is used to resolve in detailed level the flow structures, and the mixing and heat transfer between the residual gas and fresh fuel/air mixtures in the intake and compression strokes.
Technical Paper

Flow and Temperature Distribution in an Experimental Engine: LES Studies and Thermographic Imaging

2010-10-25
2010-01-2237
Temperature stratification plays an important role in HCCI combustion. The onsets of auto-ignition and combustion duration are sensitive to the temperature field in the engine cylinder. Numerical simulations of HCCI engine combustion are affected by the use of wall boundary conditions, especially the temperature condition at the cylinder and piston walls. This paper reports on numerical studies and experiments of the temperature field in an optical experimental engine in motored run conditions aiming at improved understanding of the evolution of temperature stratification in the cylinder. The simulations were based on Large-Eddy-Simulation approach which resolves the unsteady energetic large eddy and large scale swirl and tumble structures. Two dimensional temperature experiments were carried out using laser induced phosphorescence with thermographic phosphors seeded to the gas in the cylinder.
Technical Paper

Influence of Injection Timing on Exhaust Particulate Matter Emissions of Gasoline in HCCI and PPC

2016-10-17
2016-01-2300
In order to reduce nitrogen oxides (NOx) and soot emissions while maintaining high thermal efficiency, more advanced combustion concepts have been developed over the years, such as Homogeneous Charge Compression Ignition (HCCI) and Partially Premixed Combustion (PPC), as possible combustion processes in commercial engines. Compared to HCCI, PPC has advantages of lower unburned hydrocarbon (UHC) and carbon monoxide (CO) emissions; however, due to increased fuel stratifications, soot emissions can be a challenge when adding Exhaust-Gas Recirculation (EGR) gas. The current work presents particle size distribution measurements performed from HCCI-like combustion with very early (120 CAD BTDC) to PPC combustion with late injection timing (11 CAD BTDC) at two intake oxygen rates, 21% and 15% respectively. Particle size distributions were measured using a differential mobility spectrometer DMS500.
Technical Paper

Optical Study of Fuel Spray Penetration and Initial Combustion Location under PPC Conditions

2017-03-28
2017-01-0752
Low temperature combustion modes, such as Homogeneous Charge Compression Ignition (HCCI) and Partially Premixed Combustion (PPC), have been researched over recent decades since the concepts show promise for high efficiency and low emissions compared to conventional diesel combustion. PPC is an intermediate combustion type ranging from HCCI-like combustion to diesel-like combustion. The purpose of this paper is to study optically how the combustion and ignition are affected by different start of injection (SOI) timings. The study is carried out in an optically accessible heavy-duty single-cylinder engine with swirl. The intake pressure was kept constant while the intake temperature was varied to keep the combustion phasing (CA50) constant at ∼3 CAD atdc during an SOI sweep. The fuel used is a mix of primary reference fuels with octane number 81. To determine where the combustion starts, high-speed combustion imaging is used to detect the natural luminosity.
Technical Paper

Comparison of Gasoline and Primary Reference Fuel in the Transition from HCCI to PPC

2017-10-08
2017-01-2262
Our previous research investigated the sensitivity of combustion phasing to intake temperature and injection timing during the transition from homogeneous charge compression ignition (HCCI) to partially premixed combustion (PPC) fuelled with generic gasoline. The results directed particular attention to the relationship between intake temperature and combustion phasing which reflected the changing of stratification level with the injection timing. To confirm its applicability with the use of different fuels, and to investigate the effect of fuel properties on stratification formation, primary reference fuels (PRF) were tested using the same method: a start of injection sweep from -180° to -20° after top dead center with constant combustion phasing by tuning the intake temperature. The present results are further developed compared with those of our previous work, which were based on generic gasoline.
X