Refine Your Search

Topic

Search Results

Technical Paper

An Advanced Internal Combustion Engine Concept for Low Emissions and High Efficiency from Idle to Max Load Using Gasoline Partially Premixed Combustion

2010-10-25
2010-01-2198
A Scania 13 1 engine modified for single cylinder operations was run using nine fuels in the boiling point range of gasoline, but very different octane number, together with PRF20 and MK1-diesel. The eleven fuels were tested in a load sweep between 5 and 26 bar gross IMEP at 1250 rpm and also at idle (2.5 bar IMEP, 600 rpm). The boost level was proportional to the load while the inlet temperature was held constant at 303 K. For each fuel the load sweep was terminated if the ignitibility limit was reached. A lower load limit of 15 and 10 bar gross IMEP was found with fuels having an octane number range of 93-100 and 80-89 respectively, while fuels with an octane number below 70 were able to run through the whole load range including idle. A careful selection of boost pressure and EGR in the previously specified load range allowed achieving a gross indicated efficiency between 52 and 55% while NOx ranged between 0.1 and 0.5 g/kWh.
Technical Paper

Unburned Hydro Carbon (HC) Estimation Using a Self-Tuned Heat Release Method

2010-10-25
2010-01-2128
An estimation model which uses the gross heat release data and the fuel energy to estimate the total amount of emissions and unburned Hydro Carbon (HC) is developed. Gross heat release data is calculated from a self-tuned heat release method which uses in-cylinder pressure data for computing the energy released during combustion. The method takes all heat and mass losses into account. The method estimates the polytropic exponent and pressure offset during compression and expansion using a nonlinear least square method. Linear interpolation of polytropic exponent and pressure offset is then performed during combustion to calculate the gross heat release during combustion. Moreover the relations between the emissions specifically HC and Carbon Monoxide (CO) are investigated. The model was validated with experimental data and promising results were achieved.
Technical Paper

Influence of Spray-Target and Squish Height on Sources of CO and UHC in a HSDI Diesel Engine During PPCI Low-Temperature Combustion

2009-11-02
2009-01-2810
Laser induced fluorescence (LIF) imaging during the expansion stroke, exhaust gas emissions, and cylinder pressure measurements were used to investigate the influence on combustion and CO/UHC emissions of variations in squish height and fuel spray targeting on the piston. The engine was operated in a highly dilute, partially premixed, low-temperature combustion mode. A small squish height and spray targeting low on the piston gave the lowest exhaust emissions and most rapid heat release. The LIF data show that both the near-nozzle region and the squish volume are important sources of UHC emissions, while CO is dominated by the squish region and is more abundant near the piston top. Emissions from the squish volume originate primarily from overly lean mixture. At the 3 bar load investigated, CO and UHC levels in mixture leaving the bowl and ring-land crevice are low.
Technical Paper

Analysis of Smokeless Spray Combustion in a Heavy-Duty Diesel Engine by Combined Simultaneous Optical Diagnostics

2009-04-20
2009-01-1353
A heavy duty diesel engine operating case producing no engine-out smoke was studied using combined simultaneous optical diagnostics. The case was close to a typical low load modern diesel operating point without EGR. Parallels were drawn to the conceptual model by Dec and results from high-pressure combustion vessels. Optical results revealed that no soot was present in the upstream part of the jet cross-section. Soot was only observed in the recirculation zones close to the bowl perimeter. This indicated very slow soot formation and was explained by a significantly higher air entrainment rate than in Dec's study. The local fuel-air equivalence ratio, Φ, at the lift-off length was estimated to be 40% of the value in Dec's study. The lower Φ in the jet produced a different Φ -T-history, explaining the soot results. The increased air entrainment rate was mainly due to smaller nozzle holes and increased TDC density.
Technical Paper

Investigation on Differences in Engine Efficiency with Regard to Fuel Volatility and Engine Load

2008-10-06
2008-01-2385
An HSDI Diesel engine was fuelled with standard Swedish environmental class 1 Diesel fuel (MK1), Soy methyl ester (B100) and n-heptane (PRF0) to study the effects of both operating conditions and fuel properties on engine performance, resulting emissions and spray characteristics. All experiments were based on single injection diesel combustion. A load sweep was carried out between 2 and 10 bar IMEPg. For B100, a loss in combustion efficiency as well as ITE was observed at low load conditions. Observed differences in exhaust emissions were related to differences in mixing properties and spray characteristics. For B100, the emission results differed strongest at low load conditions but converged to MK1-like results with increasing load and increasing intake pressures. For these cases, spray geometry calculations indicated a longer spray tip penetration length. For low-density fuels (PRF0) the spray spreading angle was higher.
Technical Paper

A Machine Learning Approach to Information Extraction from Cylinder Pressure Sensors

2012-04-16
2012-01-0440
As the number of actuators and sensors increases in modern combustion engines, the task of optimizing engine performance becomes increasingly complex. Efficient information processing techniques are therefore important, both for off-line calibration of engine maps, and on-line adjustments based on sensor data. In-cylinder pressure sensors are slowly spreading from laboratory use to production engines, thus making data with high temporal resolution of the combustion process available. The standard way of using the cylinder pressure data for control and diagnostics is to focus on a few important physical features extracted from the pressure trace, such as the combustion phasing CA50, the indicated mean effective pressure IMEP, and the ignition delay. These features give important information on the combustion process, but much information is lost as the information from the high-resolution pressure trace is condensed into a few key parameters.
Technical Paper

Investigation of Partially Premixed Combustion Characteristics in Low Load Range with Regards to Fuel Octane Number in a Light-Duty Diesel Engine

2012-04-16
2012-01-0684
The impact of ignition quality and chemical properties on engine performance and emissions during low load partially premixed combustion (PPC) in a light-duty diesel engine were investigated. Four fuels in the gasoline boiling range, together with Swedish diesel (MK1), were operated at loads between 2 and 8 bar IMEPg at 1500 rpm, with 50% heat released located at 6 crank angle degrees (CAD) after top dead center (TDC). A single injection strategy was used, wherein the start of injection (SOI) and the injection duration were adjusted to achieve desired loads with maintained CA50, as the injection pressure was kept constant at 1000 bar. The objective of this work was to examine the low-load limit for PPC at approximately 50% EGR and λ=1.5, since these levels had been suggested as optimal in earlier studies. The low-load limits with stable combustion were between 5 and 7 bar gross IMEP for the gasoline fuels, higher limit for higher RON values.
Technical Paper

The Usefulness of Negative Valve Overlap for Gasoline Partially Premixed Combustion, PPC

2012-09-10
2012-01-1578
Partially premixed combustion has the potential of high efficiency and simultaneous low soot and NOx emissions. Running the engine in PPC mode with high octane number fuels has the advantage of a longer premix period of fuel and air which reduces soot emissions, even at higher loads. The problem is the ignitability at low load and idle operating conditions. The objective is to investigate the usefulness of negative valve overlap on a light duty diesel engine running with gasoline partially premixed combustion at low load operating conditions. The idea is to use negative valve overlap to trap hot residual gases to elevate the global in-cylinder temperature to promote auto-ignition of the high octane number fuel. This is of practical interest at low engine speed and load operating conditions because it can be assumed that the available boost is limited. The problem with NVO at low load operating conditions is that the exhaust gas temperature is low.
Technical Paper

Applicability of Ionization Current Sensing Technique with Plasma Jet Ignition Using Pre-Chamber Spark Plug in a Heavy Duty Natural Gas Engine

2012-09-10
2012-01-1632
This article deals with study of ionization current sensing technique's signal characteristics while operating with pre-chamber spark plug to achieve plasma jet ignition in a 6 cylinder 9 liter turbo-charged natural gas engine under EGR and excess air dilution. Unlike the signal with conventional spark plug which can be divided into distinct chemical and thermal ionization peaks, the signal with pre-chamber spark plug shows a much larger first peak and a negligible second peak thereafter. Many studies in past have found the time of second peak coinciding with the time of maximum cylinder pressure and this correlation has been used as an input to combustion control systems but the absence of second peak makes application of this concept difficult with pre-chamber spark plug.
Technical Paper

Effects of EGR and Intake Pressure on PPC of Conventional Diesel, Gasoline and Ethanol in a Heavy Duty Diesel Engine

2013-10-14
2013-01-2702
Partially Premixed Combustion (PPC) has the potential of simultaneously providing high engine efficiency and low emissions. Previous research has shown that with proper combination of Exhaust-Gas Recirculation (EGR) and Air-Fuel equivalence ratio, it is possible to reduce engine-out emissions while still keeping the engine efficiency high. In this paper, the effect of changes in intake pressure (boost) and EGR fraction on PPC engine performance (e.g. ignition delay, burn duration, maximum pressure rise rate) and emissions (carbon monoxide (CO), unburned hydrocarbon (UHC), soot and NOX) was investigated in a single-cylinder, heavy-duty diesel engine. Swedish diesel fuel (MK1), RON 69 gasoline fuel and 99.5 vol% ethanol were tested. Fixed fueling rate and single injection strategy were employed.
Technical Paper

An Experimental Investigation of a Multi-Cylinder Engine with Gasoline-Like Fuel towards a High Engine Efficiency

2016-04-05
2016-01-0763
Partially Premixed Combustion (PPC) is a promising combustion concept with high thermodynamic efficiency and low emission level, and also with minimal modification of standard engine hardware. To use PPC in a production oriented engine, the optimal intake charge conditions for PPC should be included in the analysis. The experiments in this paper investigated and confirmed that the optimal intake conditions of net indicated efficiency for PPC are EGR between 50% and 55% as possible and the lambda close to 1.4. Heat-transfer energy and exhaust gas waste-energy contribute to the majority of the energy loss in the engine. The low EGR region has high heat-transfer and low exhaust gas enthalpy-waste, while the high EGR region has low heat-transfer and high exhaust gas waste-enthalpy. The optimal EGR condition is around 50% where the smallest energy loss is found as a trade-off between heat transfer and exhaust-gas enthalpy-waste.
Technical Paper

Potential Levels of Soot, NOx, HC and CO for Methanol Combustion

2016-04-05
2016-01-0887
Methanol is today considered a viable green fuel for combustion engines because of its low soot emissions and the possibility of it being produced in a CO2-neutral manner. Methanol as a fuel for combustion engines have attracted interest throughout history and much research was conducted during the oil crisis in the seventies. In the beginning of the eighties the oil prices began to decrease and interest in methanol declined. This paper presents the emission potential of methanol. T-Φ maps were constructed using a 0-D reactor with constant pressure, temperature and equivalence ratio to show the emission characteristics of methanol. These maps were compared with equivalent maps for diesel fuel. The maps were then complemented with engine simulations using a stochastic reactor model (SRM), which predicts end-gas emissions. The SRM was validated using experimental results from a truck engine running in Partially Premixed Combustion (PPC) mode at medium loads.
Technical Paper

A Correlation Analysis of the Roles of Soot Formation and Oxidation in a Heavy-Duty Diesel Engine

2013-10-14
2013-01-2535
Emissions and in-cylinder pressure traces are used to compare the relative importance of soot formation and soot oxidation in a heavy-duty diesel engine. The equivalence ratio at the lift-off length is estimated with an empirical correlation and an idealized model of diesel spray. No correlation is found between the equivalence ratio at lift-off and the soot emissions. This confirms that trends in soot emissions cannot be directly understood by the soot formation process. The coupling between soot emission levels and late heat release after end of injection is also studied. A regression model describing soot emissions as function of global engine parameters influencing soot oxidation is proposed. Overall, the results of this analysis indicate that soot emissions can be understood in terms of the efficiency of the oxidation process.
Technical Paper

Spray and Combustion Visualization of Gasoline and Diesel under Different Ambient Conditions in a Constant Volume Chamber

2013-10-14
2013-01-2547
Spray and combustion of gasoline and diesel were visualized under different ambient conditions in terms of pressure, temperature and density in a constant volume chamber. Three different ambient conditions were selected to simulate the three combustion regimes of homogeneous charge compression ignition, premixed charge compression ignition and conventional combustion. Ambient density was varied from 3.74 to 23.39 kg/m3. Ambient temperature at the spray injection were controlled to the range from 474 to 925 K. Intake oxygen concentration was also modulated from 15 % to 21 % in order to investigate the effects of intake oxygen concentrations on combustion characteristics. The injection pressure of gasoline and diesel were modulated from 50 to 150 MPa to analyze the effect of injection pressure on the spray development and combustion characteristics. Liquid penetration length and vapor penetration length were measured based on the methods of Mie-scattering and Schileren, respectively.
Technical Paper

A Study on In-Cycle Control of NOx Using Injection Strategy with a Fast Cylinder Pressure Based Emission Model as Feedback

2013-10-14
2013-01-2603
The emission control in heavy-duty vehicles today is based on predefined injection strategies and after-treatment systems such as SCR (selective catalytic reduction) and DPF (diesel particulate filter). State-of-the-art engine control is presently based on cycle-to-cycle resolution. The introduction of the crank angle resolved pressure measurement, from a piezo-based pressure sensor, enables the possibility to control the fuel injection based on combustion feedback while the combustion is occurring. In this paper a study is presented on the possibility to control NOx (nitrogen oxides) formation with a crank angle resolved NOx estimator as feedback. The estimator and the injection control are implemented on an FPGA (Field-Programmable Gate Array) to manage the inherent time constraints. The FPGA is integrated with the rest of the engine control system for injection control and measurement.
Technical Paper

Emission Formation Study of HCCI Combustion with Gasoline Surrogate Fuels

2013-10-14
2013-01-2626
HCCI combustion can be enabled by many types of liquid and gaseous fuels. When considering what fuels will be most suitable, the emissions also have to be taken into account. This study focuses on the emissions formation originating from different fuel components. A systematic study of over 40 different gasoline surrogate fuels was made. All fuels were studied in a CFR engine running in HCCI operation. Many of the fuels were blended to achieve similar RON's and MON's as gasoline fuels, and the components (n-heptane, iso-octane, toluene, and ethanol) were chosen to represent the most important in gasoline; nparaffins, iso-paraffins, aromatics and oxygenates. The inlet air temperature was varied from 50°C to 150°C to study the effects on the emissions. The compression ratio was adjusted for each operating point to achieve combustion 3 degrees after TDC. The engine was run at an engine speed of 600 rpm, with ambient intake air pressure and with an equivalence ratio of 0.33.
Technical Paper

A Droplet Size Investigation and Comparison Using a Novel Biomimetic Flash-Boiling Injector for AdBlue Injections

2016-10-17
2016-01-2211
Increased research is being driven by the automotive industry facing challenges, requiring to comply with both current and future emissions legislation, and to lower the fuel consumption. The reason for this legislation is to restrict the harmful pollution which every year causes 3.3 million premature deaths worldwide [1]. One factor that causes this pollution is NOx emissions. NOx emission legislation has been reduced from 8 g/kWh (Euro I) down to 0.4 g/kWh (Euro VI) and recently new legislation for ammonia slip which increase the challenge of exhaust aftertreatment with a SCR system. In order to achieve a good NOx conversion together with a low slip of ammonia, small droplets of Urea solution needs to be injected which can be rapidly evaporated and mixed into the flow of exhaust gases.
Technical Paper

Optimum Heat Release Rates for a Double Compression Expansion (DCEE) Engine

2017-03-28
2017-01-0636
The concept of double compression, and double expansion engine (DCEE) for improving the efficiency of piston reciprocating engines was introduced in SAE Paper 2015-01-1260. This engine configuration has separate high, and low pressure units thereby effectively reducing friction losses for high effective compression ratios. The presence of an additional expander stage also theoretically allows an extra degree of freedom to manipulate the combustion heat release rate so as to achieve better optimum between heat transfer, and friction losses. This paper presents a 1-D modeling study of the engine concept in GT-Power for assessing the sensitivity of engine losses to heat release rate. The simulations were constrained by limiting the maximum pressure to 300 bar.
Technical Paper

Lift-Off Lengths in an Optical Heavy-Duty Engine Operated at High Load with Low and High Octane Number Fuels

2018-04-03
2018-01-0245
The influence of the ignition quality of diesel-and gasoline-like fuels on the lift-off length of the jet were investigated in an optical heavy duty engine. The engine was operated at a load of 22 bar IMEPg and 1200 rpm. A production type injector with standard holes were used. The lift-off length was recorded with high speed video Different injection pressures and inlet temperatures were used to affect conditions that consequently affect the lift-off length. No matter which fuel used nor injection pressure or inlet temperature, all lift-off lengths showed equal or close to equal lift-off length when stabilized. The higher octane fuel had a longer ignition delay and therefore the fuel penetrate the combustion chamber before auto ignition. This gave a longer lift-off length at the initial stage of combustion before reaching the same stabilized lift-off length. These results indicate that the hot combustion gases are a dominant factor to the lift-off length.
Technical Paper

A Numerical Study on the Sensitivity of Soot and NOx Formation to the Operating Conditions in Heavy Duty Engines

2018-04-03
2018-01-0177
In this paper, computation fluid dynamics (CFD) simulations are employed to describe the effect of flow parameters on the formation of soot and NOx in a heavy duty engine under low load and high load. The complexity of diesel combustion, specially when soot, NOx and other emissions are of interest, requires using a detailed chemical mechanism to have a correct estimation of temperature and species distribution. In this work, Multiple Representative Interactive Flamelets (MRIF) method is employed to describe the chemical reactions, ignition, flame propagation and emissions in the engine. A phenomenological model for soot formation, including soot nucleation, coagulation and oxidation with O2 and OH is incorporated into the flamelet combustion model. Different strategies for modelling NOx are chosen to take into account the longer time scale for NOx formation. The numerical results are compared with experimental data to show the validity of the model for the cases under study.
X