Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Finite Element Analysis to Analyze the Properties of Pole Impacts

2018-04-03
2018-01-0519
The objectives of this study were to use Finite Element (FE) simulations to predict the crush profile resulting from frontal pole impacts and to compare the results of the FE simulations to existing reconstruction methods. A 2001 Ford Taurus FE model created by the National Crash Analysis Center (NCAC) was used to simulate four pole impact tests performed by the Insurance Institute of Highway Safety (IIHS) involving the same generation of Ford Taurus. The FE crush profiles show good correlation to the physical tests. The maximum crush was predicted within ±3% for three of the tests and was under predicted by 7% in the fourth test. The same FE model was then used to simulate 22 more pole impacts to study how impact speed and lateral pole offset from the centerline affected maximum crush. At impact speeds of 32 km/h, the maximum crush did not vary by more than 4 cm for different pole locations ±500 mm from the vehicle centerline.
Journal Article

The Accuracy and Sensitivity of 2005 to 2008 Toyota Corolla Event Data Recorders in Low-Speed Collisions

2013-04-08
2013-01-1268
Collision related data stored in the airbag control modules (ACM's) of Toyota vehicles can provide useful information to collision investigators, including both front and rear collision severity. Previous studies of ACM's from other manufacturers found that the devices underestimated the actual speed change in low speed frontal collisions. To quantify the accuracy and sensitivity of select 2005 to 2008 Toyota ACM's, in-vehicle crash tests and linear sled tests were performed in both front and rear impact orientations. A 2005 Toyota Corolla with five extra ACM's mounted in the right front seat position underwent a series of vehicle-to-barrier collisions with speed changes of up to 10 km/h. Next, the same six Toyota ACMs underwent a range of crash pulses using a linear sled. In all in-vehicle tests, the speed change reported by the ACM underestimated the actual speed change for frontal collisions, and overestimated the actual speed change for rear-end collisions.
Technical Paper

Front and Rear Car Crush Coefficients for Energy Calculations

2010-04-12
2010-01-0069
Quantifying the energy associated with vehicle damage is the basis of common methods used to reconstruct car crashes. This study sought to characterize the relationship between crush and energy for the front and rear surfaces of a passenger car. Nine stationary barrier crash tests and one aligned car-to-car test were conducted using several cars of the same model with impact speeds ranging from 4.3 to 15.2 m/s generating as much as 0.47 m of crush. The results revealed a linear speed-crush relationship for front and rear car surfaces and a restitution coefficient that decreased from a maximum of 0.33 at low speed to a relatively constant value of 0.15 for crush levels above 0.2 m. Crush coefficients derived from the crash tests were compared to the coefficients from three other sources: i) default values from the CRASH3 computer program, ii) values from a published database and iii) values derived from an assumed damage threshold value and an NHTSA high-speed crash test.
Technical Paper

Behavior of Toyota Airbag Control Modules Exposed to Low and Mid-Severity Collision Pulses

2017-03-28
2017-01-1438
The repeatability and accuracy of front and rear speed changes reported by Toyota’s Airbag Control Modules (ACMs) have been previously characterized for low-severity collisions simulated on a linear sled. The goals of the present study are (i) to determine the accuracy and repeatability of Toyota ACMs in mid-severity crashes, and (ii) to validate the assumption that ACMs function similarly for idealized sled pulses and full-scale vehicle-to-barrier and vehicle-to-vehicle crashes. We exposed three Toyota Corollas to a series of full-scale aligned frontal and rear-end crash tests with speed changes (ΔV) of 4 to 12 km/h. We then characterized the response of another 16 isolated Toyota ACMs from three vehicle models (Corolla, Prius and Camry) and 3 generations (Gen 1, 2 and 3) using idealized sled pulses and replicated vehicle-to-vehicle and vehicle-to-barrier pulses in both frontal and rear-end crashes (ΔV = 9 to 17 km/h).
Technical Paper

Using Adjusted Force-Displacement Data to Predict the EBS of Car into Barrier Impacts

2019-04-02
2019-01-0425
Our goal was to evaluate whether modifications to the force-displacement curves derived from a high-speed NHTSA frontal barrier test could be used to improve predictions of the equivalent barrier speed of a low-speed crash involving the same vehicle. Using an earlier iteration of the technique described here, Hunter et al. [2] showed that the F-D curves from higher-speed tests over-predicted the EBS of lower-speed tests by 21±17%. After modifying the earlier technique to account for powertrain stack-up and barrier force attenuation prior to reaching peak dynamic crush, the technique evaluated here reduced this error to 1% with a standard deviation that varied between ±9% and ±13% depending on which engine accelerometers were chosen for the adjustment. These findings suggest that the method and modifications proposed here can be used to reconstruct car crashes provided that there is a relationship between dynamic crush and residual crush.
X