Refine Your Search

Topic

Search Results

Viewing 1 to 16 of 16
Journal Article

Influence of Low Viscosity Lubricating Oils on Fuel Economy and Durability of Passenger Car Diesel Engine

2012-01-09
2012-28-0010
Continuously rising fuel prices and global concern on climate change have resulted in a need to deliver vehicles with increased fuel economy. This has to be achieved without compromising on performance, durability and cost. Passenger car manufacturers are looking at various ways to maximize fuel economy. Major part of fuel saving can be tapped from engine itself. This can be done by activities on engine as below: Improving overall combustion efficiency and hence BSFC Efficient thermal management. Weight reduction of engine parts or complete downsizing Hybridization. Reducing engine losses i.e. parasitic losses from auxiliaries and frictional losses. This paper is focused on the reduction of engine frictional losses (FMEP) through the use of low viscosity lubrication oils. Various factors in lubrication oil contribute to friction. Experimental approach to quantifying the effect of different parameters of lubrication oil on total engine friction is presented.
Technical Paper

Experimental Evaluation of Performance of Effective Upper Belt Anchorage (EUBA), Lower Belt Anchorage (LBA) and Floor Deformation under Different Test Configuration as per ECE R14

2008-04-14
2008-01-0185
Seats, seat belts, seat belt anchorages, etc., are safety critical items for the passenger in case of sudden acceleration/deceleration and accidents. Seat belts have become mandatory fitments on front seats of M and N categories of vehicles from April 1994 in India[1]. Seat belt without a proper anchorage does not serve any purpose. Hence, seat belt anchorage testing became mandatory in India in year 2002. In real accident situation seat belts come in to action within few ms and complete phenomenon is finished in 150 ms. However the regulatory requirements prescribed in AIS: 015, ECE R14 and 76/115/EEC specify the application of loading to be achieved as rapidly [2].A number of seat belt anchorage tests were conducted on BIW and laboratory model setups. This paper highlights the effect of loading rate, and loading method on the load bearing capacity of the seat belt anchorages, floor area and seat structures.
Technical Paper

Implementation of Interior Fitting Regulation (ECE R21) in India: Common Failures and Countermeasures in Instrument Panel Development

2009-04-20
2009-01-0053
Head form impact tests are carried out on instrument panel as part of meeting the requirements of the interior fitting regulation ECE R21. India adopted the ECE R21 regulation and interior fitting impact tests became mandatory in April 2005 for models manufactured from April 2005 and April 2006 for models being manufactured before April 2005. Energy dissipation testing of vehicle’s interior fitments is done at various selected and defined locations. With the implementation of interior fitting regulation in India, it is mandatory that every manufacturer tests and certifies their product to comply with the energy dissipation standards as defined in the regulation ECE R21. Extensive interior fitting test program is carried out for various models ranging from MY1993 to MY2003.During the development testing following types of failures were observed: Occurrence of surface cracks due to sharp edges and component dislocation.
Technical Paper

Effect of PVC Skin and Its Properties on Automotive Door Trim Inserts

2017-03-28
2017-01-0492
Plastic plays a major role in automotive interiors. Till now most of the Indian automobile industries are using plastics mainly to cover the bare sheet metal panels and to reduce the weight of the vehicle along with safety concerns. Eventually Indian customer requirement is changing towards luxury vehicles. Premium look and luxury feel of the vehicle plays an equal role along with fuel economy and cost. Interior cabin is the place where aesthetics and comfort is the key to attract customers. Door Trims are one of the major areas of interiors where one can be able to provide premium feeling to the customer by giving PVC skin and decorative inserts. This paper deals with different types of PVC skins and its properties based on process constraints, complexity of the inserts. Door trim inserts can be manufactured by various methods like adhesive pasting, thermo-compression molding and low pressure injection molding process etc.
Technical Paper

Determining the Parameters of Feeling for a Mechanism of Seat Adjustment

2017-03-28
2017-01-1392
The seating system is an inseparable part of any automobile. Its main function is not only to provide a space to the user for driving but also to provide support, comfort and help to ergonomically access the various features and necessary operations of the vehicle. For comfort and accessibility, seats are provided with various mechanisms for adjustments in different directions. Typical mechanisms used for seating adjustment include seatback recliners, lifters (height adjusters), longitudinal adjusters, lumber support, rear seat folding mechanism etc. These mechanisms can be power operated or manual based on vehicle/market requirements. For manual mechanisms, the occupant adjusts the position of seat by operating the mechanism with his/her hand. Often comfort to the occupant during operation is limited to the operating effort of the mechanism. However, as will be shown through this study, operating effort is only one of the parameters which provide overall comfort feeling.
Technical Paper

Study and proposals for improving static comfort in automotive seating

2017-03-28
2017-01-1389
Automotive seating is designed by considering safety, comfort and aesthetics for the occupants. Seating comfort is one of the important parameters for the occupant for enhancing the overall experience in a vehicle. Seating comfort is categorized as static (or showroom) comfort and dynamic comfort. The requirements for achieving static and dynamic comfort can sometimes differ and may require design parameters such as PU hardness to be set in opposite directions. This paper presents a case wherein a base seat with good dynamic comfort is taken and an analysis is done to improve upon the static comfort, without compromising on the dynamic comfort. The study focuses on improving the initial comfort by considering various options for seating upholstery.
Technical Paper

Effectiveness of Vehicle Cool Glove Box and Analysis of Parameters Effecting Cool Glove Box Performance

2018-04-03
2018-01-0069
People needs and expectations from vehicles have changed. One of the need is to maintain the temperature of beverages without use of any external source. Cool Glove Box is a feature in which cool air from automotive HVAC system is used to maintain the temperature of the beverages in passenger vehicles. There are various parameters which play a vital role in maintaining the temperature of the beverages and to reduce the rise in temperature. The effectiveness of cool Glove Box is tested in vehicle in an environmental controlled chamber and impact of various parameters which affects the performance are studied. The Glove Box with cooling feature located on bottom of instrumental panel with good sealing and having high air flow directly from HVAC unit will have good cooling performance.
Technical Paper

Passenger under Foot Structure and its Efficacy:-Analytical & Experimental Evaluation

2018-04-03
2018-01-0154
Increasing customer expectations of comfort and convenience inside the vehicle has resulted in OEMs working on various solutions to improve interior ergonomics and overall layout. One of the key areas of focus has been the ease of ingress into and egress from the vehicle. But with increased sharing of platforms in OEM Model Lineup, due to obvious benefits like cost and common tooling/parts, it is very difficult to achieve improved results in different vehicles (like Hatchback, Notchback, SUV etc.) but with same underpinnings. One of the commonly used approaches is provision of false flooring via floor pads for front / Rear Passengers for easy Egress-Ingress. Floor Pads are used to maintain similar comfort levels across different vehicles sharing common platform and to maintain similar relationship between Foot resting positions and Side Sill.
Technical Paper

Model Based Design of xEV Powertrain Controls

2012-01-09
2012-28-0023
Powertrain Control development has gone through many changes in terms of process, tools and practice at all OEM's across the geography. This is mainly driven by increased number of powertrain components for control, shorter development schedules, cost control, and the need to realize the potential of electronic control to increase the performance, efficiency, safety and comfort. With the significant advancement in Powertrain Controls and additions of electronic functions, it has become imperative to automate the controller development process in the V-cycle to reduce the time and make the process more efficient while detecting any logic failures upfront at the early stage of the development cycle. Traditional practices and tools of defining the controls cannot meet new requirements. Model Based Design (MBD) approach is a promising solution to meet the critical needs of powertrain control engineering to define the control logic and validate.
Technical Paper

Research to Explore Different Failures and their Countermeasures in Automotive Seating Fabrics

2013-01-09
2013-26-0076
In automotive seating system, seat upholstery quality has an important role in defining the overall quality and aesthetics of vehicle interiors. Technical textiles for seating system used in automotive applications are generally categorized into woven or knitted type. An automotive textile material is a composite material made up of three layers; base fabric (top layer), foam (middle layer) and scrim (bottom layer) as shown in Fig. 1. There are many challenges to be overcome during development of fabric e.g. mechanical, physical and aesthetic issues have an impact on overall seat quality, appearance and performance. These issues get highlighted during testing, which takes place during development stage of fabric. The concerns mentioned above are found in automotive textiles in both woven and knitted types of fabrics sourced from different manufacturing set-ups. This paper focuses on identification of problems during testing, followed by root cause analysis.
Technical Paper

Development of Jig to Determine Center of Gravity for Vehicle Seats (Unsymmetrical Three Dimensional Bodies) for Automotive Regulatory Test

2013-01-09
2013-26-0059
This article brings a practical analysis for determination of gravity center in unsymmetrical three dimensional bodies practically and graphically. The gravitational center of an object is the point from which if suspended, the object remains stable at all times, this is also called as center of mass of the object, or the theoretical point at which the entire weight of the object is assumed to be concentrated. In certain tests, the Center of Gravity (CG) of the Seat is required to be known, for load application. The CG is the point at which a SEAT would balance if it were possible to suspend it at that point. This paper deals with use of applied engineering and theoretical calculations to ascertain the CG of First and Second Row seats (individual and bench type). In this case the center of gravity location is expressed in units of length along each of three axes (X, Y and Z). Load balance equation is used to calculate the CG of the seat.
Technical Paper

Dynamic Simulation of Shift Tower

2013-11-27
2013-01-2790
Manual transmission is one of the key system of power-train to which driver directly interacts, so its shift feeling is important for the merchantability. The importance of the gear shift quality of manual transmissions has increased significantly over the past few years as the refinement of other vehicle systems has increased and also due to rise in customer expectations. Shift Tower is a system to assist the driver during selecting and shifting of Gears. The dynamic interaction of shift Tower at a component level is difficult to interpret by traditional test methods and virtually impossible at concept stage. To overcome these difficulties a dynamic model of the entire Shift Tower mechanism i.e. Shift select lever, 3D Ramp, Detent Pin, Spring, Interlock mechanism has been created. The model predicts the gearshift quality i.e. Shift and Select force values for a given set of input parameters, which can be correlated against test data.
Technical Paper

Seat Belt Reminder Sensor Selection for Optimized Performance and Driver Convenience

2019-04-02
2019-01-0832
Use of safety belts inside a vehicle is necessary to ensure the safety of passengers as well as drivers. To promote the use of seat belts, a seatbelt reminder system is utilized. This system incorporates a sensor for checking seat occupancy for the passenger seat. Activation of these sensors depends on various parameters like seat pad shape, seat upholstery, vehicle H-point, a load on the seat, etc. In this study, the load factor on the seat is studied. The load on the seat may come from occupants or due to the objects placed on the seat. The detection of objects as an occupant may result in false seat belt reminder alarm and cause inconvenience to the customers. Subjective analysis and surveys, covering a broad range of market population, were done to identify such objects. Consequently, performance requirements were determined to facilitate sensor optimization and selection.
Technical Paper

Effect of Environmental Factors on the Function of an Automotive Luggage Cover of a Passenger Vehicle – A Case Study

2024-01-16
2024-26-0228
The Indian passenger vehicle market has grown by more than 40% by volume in the last decade and has reached a record high in FY23. This has created a more diverse and demanding customer base that values interior design and quality. The modern customer expects a high level of aesthetics and sophistication in their vehicle interiors - including in the luggage area. The Luggage Cover (Parcel Tray) is a component in the luggage area of a passenger vehicle that is used to conceal the luggage & improve its aesthetics. The cover is generally made of thermoplastic material with rotating hinges and is held in its place by the compression from the back door, which is frequently opened and closed. The parts that connect the cover to the door (usually an elastomer interface on the thermoplastic tray) tend to change over a period due to climatic conditions and leads to rattling concerns over a period.
Technical Paper

A Novel Approach to Define and Validate Market Representative Routes for IUPRm Development in India

2024-01-16
2024-26-0361
To promote real time monitoring, IUPRm checks has been enforced in India from Apr’23 as a part of BS6-2 regulation. Since IUPRm monitoring is representative of diagnostic frequency in real driving conditions and usage pattern. Therefore, a clear understanding of real-world driving is required to define IUPRm targets. This paper shares methodology and Validation steps for defining IUPR routes for Indian market. Methodology objective is to standardize the market operating conditions over a particular region. Selected Methodology consist of three steps: For defining IUPR route framework, first step is to have a pre-market survey to know current IUPR status and improvement areas in existing market vehicles. Second step is to define market representative localized on road routes based on the finding of Pre-market survey. Third step is to validate defined IUPR routes and correlate the output in reference to coverage of market operating conditions.
Technical Paper

Passenger Car Front End Optimization Using CFD Simulation

2014-04-01
2014-01-0627
Increased engine thermal load, front end styling and compact vehicle requirements have led to significant challenges for vehicle front end designer to provide innovative thermal management solutions. The front end cooling module design which consists of condenser, radiator, fan and intercooler is an important part of design as it ensures adequate heat removal capacity of radiator over a wide range of operating conditions to prevent overheating of engine. The present study describes the optimization of cooling air flow opening in the front end using CFD methodology of a typical passenger car. The predicted vehicle system resistance curve and coolant inlet temperature to the radiator are used for the selection of cooling modules and to further optimize the front end cooling opening area. This leds to the successful optimization of the front end, selection of cooling modules with significant cost savings by reducing prototype testing and design cycle time.
X