Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Dual-Fuel Gasoline-Alcohol Engines for Heavy Duty Trucks: Lower Emissions, Flexible-Fuel Alternative to Diesel Engines

Long-haul and other heavy-duty trucks, presently almost entirely powered by diesel fuel, face challenges meeting worldwide needs for greatly reducing nitrogen oxide (NOx) emissions. Dual-fuel gasoline-alcohol engines could potentially provide a means to cost-effectively meet this need at large scale in the relatively near term. They could also provide reductions in greenhouse gas emissions. These spark ignition (SI) flexible fuel engines can provide operation over a wide fuel range from mainly gasoline use to 100% alcohol use. The alcohol can be ethanol or methanol. Use of stoichiometric operation and a three-way catalytic converter can reduce NOx by around 90% relative to emissions from diesel engines with state of the art exhaust treatment.
Technical Paper

Alcohol Fueled Heavy Duty Vehicles Using Clean, High Efficiency Engines

Non-petroleum based liquid fuels are essential for reducing oil dependence and greenhouse gas generation. Increased substitution of alcohol fuel for petroleum based fuels could be achieved by 1) use in high efficiency spark ignition engines that are employed for heavy duty as well as light duty operation and 2) use of methanol as well as ethanol. Methanol is the liquid fuel that is most efficiently produced from thermo-chemical gasification of coal, natural gas, waste or biomass. Ethanol can also be produced by this process but at lower efficiency and higher cost. Coal derived methanol is in limited initial use as a transportation fuel in China. Methanol could potentially be produced from natural gas at an economically competitive fuel costs, and with essentially the same greenhouse gas impact as gasoline. Waste derived methanol could also be an affordable low carbon fuel.
Technical Paper

Flex Fuel Gasoline-Alcohol Engines For Near Zero Emissions Plug-In Hybrid Long Haul Trucks

Internal combustion engines for plug-in hybrid heavy duty trucks, especially long haul trucks, can play an important role in facilitating use of battery power. Power from a low carbon electricity source could thereby be employed without an unattractive vehicle cost increase or range limitation. The ideal engine should be powered by a widely available affordable liquid fuel, should minimize air pollutant emissions, and should provide lower greenhouse gas emissions. Diesel engines fall short in meeting these objectives, especially because of high NOx emissions. In this paper we describe features of flex fuel alcohol enhanced gasoline engines in series hybrid powertrains where the engines have the same or greater efficiency of diesel engines while also having 90% lower NOx emissions. Ethanol or methanol is employed to increase knock resistance and provide improved combustion.