Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

A Study of Cycle-to-Cycle Variations in SI Engines Using a Modified Quasi-Dimensional Model

This paper describes the use of a modified quasi-dimensional spark-ignition engine simulation code to predict the extent of cycle-to-cycle variations in combustion. The modifications primarily relate to the combustion model and include the following: 1. A flame kernel model was developed and implemented to avoid choosing the initial flame size and temperature arbitrarily. 2. Instead of the usual assumption of the flame being spherical, ellipsoidal flame shapes are permitted in the model when the gas velocity in the vicinity of the spark plug during kernel development is high. Changes in flame shape influence the flame front area and the interaction of the enflamed volume with the combustion chamber walls. 3. The flame center shifts due to convection by the gas flow in the cylinder. This influences the flame front area through the interaction between the enflamed volume and the combustion chamber walls. 4. Turbulence intensity is not uniform in cylinder, and varies cycle-to-cycle.
Technical Paper

A Model for Flame Initiation and Early Development in SI Engine and its Application to Cycle-to-Cycle Variations

This paper uses a model which calculates the flame kernel formation and its early development in spark ignition engines to examine the causes of cycle-to-cycle combustion variations. The model takes into account the primary physical factors influencing flame development. The spark-generated flame kernel size and temperature required to initialize the computation are completely determined by the breakdown energy and the heat conduction from burned region to unburned region. In order to verify the model, the computation results are compared with high-speed Schlieren photography flame development data from an operating spark-ignition engine; they match remarkably well with each other at all test conditions. For the application of this model to the study of cycle-to-cycle variation of the early stage of combustion, additional input is required.