Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Flame Kernel Development in a Methanol Fueled Engine

1993-10-01
932649
The combustion behavior in a modem 4-valve engine using a broad range of methanol/gasoline fuel mixtures was studied. The initial flame development was examined by using a spark plug fiber optics probe. Approximately, the kernel expansion speed, Sg, is relatively unchanged from M0 to M40; jumps by ∼30% from M40 to M60; and then remains roughly constant from M60 to M100. Statistics of the IMEP indicate that at a lean idle condition the combustion rate and robustness correlate with Sg: a higher value of Sg gives better combustion. Thus M60-M100 fuels give better idle combustion behavior than the M0-M40 fuels.
Technical Paper

Effects of Ethanol Evaporative Cooling on Particulate Number Emissions in GDI Engines

2018-04-03
2018-01-0360
The spark ignition engine particulate number (PN) emissions have been correlated to a particulate matter index (PMI) in the literature. The PMI value addresses the fuel effect on PN emission through the individual fuel species reactivity and vapor pressure. The latter quantity is used to account for the propensity of the non-volatile fuel components to survive to the later part of the combustion event as wall liquid films, which serve as sources for particulate emission. The PMI, however, does not encompass the suppression of vaporization by the evaporative cooling of fuel components, such as ethanol, that have high latent heat of vaporization. This paper assesses this evaporative cooling effect on PN emissions by measurements in a GDI engine operating with a base gasoline which does not contain oxygenate, with a blend of the gasoline and ethanol, and with a blend of the gasoline, ethanol, and a hydrocarbon additive so that the blend has the same PMI as the original gasoline.
Technical Paper

Fuel Effects on Throttle Transients in PFI Spark Ignition Engines

1997-05-01
971613
The fuel effects on throttle transients in PFI spark ignition engines were assessed through experiments with simultaneous step change of the throttle position from part load to WOT and increment of the injected fuel amount. The test matrix consisted of various gasoline/methanol blends from pure gasoline to pure methanol, coolant temperatures at 40C (for cold engine condition) and 80C (for warm engine), and different levels of fuel enrichment at the WOT condition. The x-τ model was used to interpret the engine GIMEP response in the transient. Using the model, a procedure was developed to calculate the parameters of the transient from the data. These parameters were systematically regressed against the fuel distillation points, the increment in injected fuel mass in the transient, and the enthalpy required to evaporate the fuel increment as the explanatory variables.
X