Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

The Possible Role of Surface Tension in the Reduction of Top Ring Drag

1993-10-01
932781
In a small (4.5 KW) diesel engine, Laser Induced Fluorescence (LIF) has been used to produce detailed oil film thickness measurements around the top piston ring and liner near midstroke. The flow is “Newtonian” under the ring in the sense that using a high shear rate viscosity at the liner temperature is appropriate. The geometry corresponds everywhere to that required for a valid Reynolds approximation. Classical boundary conditions are not applicable for the high strain rates (106-107 s-1) under the piston rings of typical modem engines. A new boundary condition is developed to explain the data. The exit surface shear stress is shown to scale with a Marangoni-like (surface tension gradient) effect. By increasing surface tension, it is possible to make substantial reductions in friction for a fixed high shear viscosity.
Technical Paper

A Numerical Model of Piston Secondary Motion and Piston Slap in Partially Flooded Elastohydrodynamic Skirt Lubrication

1994-03-01
940696
This paper presents a numerical model of the rotational and lateral dynamics of the piston (secondary motion) and piston slap in mixed lubrication. Piston dynamic behavior, frictional and impact forces are predicted as functions of crank angle. The model considers piston skirt surface waviness, roughness, skirt profile, thermal and mechanical deformations. The model considers partially-flooded skirt and calculates the pressure distributions and friction in the piston skirt region for both hydrodynamic and boundary lubrication. Model predictions are compared with measurements of piston position using gap sensors in a single-cylinder engine and the comparison between theory and measurement shows remarkable agreement.
Technical Paper

Engine Experiments on the Effects of Design and Operational Parameters on Piston Secondary Motion and Piston Slap

1994-03-01
940695
Experiments were done to quantify the dynamic motion of the piston and oil-film during piston impact on the cylinder bore, commonly known as “piston slap.” Parameters measured include engine block vibration, piston-skirt to liner separation, oil-film thickness between the piston and liner, and other engine operating conditions. Experimental parametric studies were performed covering the following: engine operating parameters - spark timing, liner temperature, oil-film thickness, oil type, and engine speed; and engine design parameters - piston-skirt surface waviness, piston-skirt/cylinder-liner clearance, and wrist-pin offset. Two dynamic modes of piston-motion-induced vibration were observed, and effects of changes in engine operating and design parameters were investigated for both types of slap. It was evident that engine design parameters have stronger effects on piston slap intensity, with piston-skirt/liner clearance and wrist-pin offset being the dominant parameters.
X