Refine Your Search

Topic

Author

Search Results

Technical Paper

Piston Fuel Film Observations in an Optical Access GDI Engine

2001-05-07
2001-01-2022
A gasoline direct injection fuel spray was observed using a fired, optical access, square cross-section single cylinder research engine and high-speed video imaging. Spray interaction with the piston is described qualitatively, and the results are compared with Computational Fluid Dynamics (CFD) simulation results using KIVA-3V version 2. CFD simulations predicted that within the operating window for stratified charge operation, between 1% and 4% of the injected fuel would remain on the piston as a liquid film, dependent primarily on piston temperature. The experimental results support the CFD simulations qualitatively, but the amount of fuel film remaining on the piston appears to be under-predicted. High-speed video footage shows a vigorous spray impingement on the piston crown, resulting in vapor production.
Technical Paper

Investigation of the Dilution Process for Measurement of Particulate Matter from Spark-Ignition Engines

1998-10-19
982601
Measurements of particulate matter (PM) from spark ignition (SI) engine exhaust using dilution tunnels will become more prevalent as emission standards are tightened. Hence, a study of the dilution process was undertaken in order to understand how various dilution related parameters affect the accuracy with which PM sizes and concentrations can be determined. A SI and a compression ignition (CI) engine were separately used to examine parameters of the dilution process; the present work discusses the results in the context of SI exhaust dilution. A Scanning Mobility Particle Sizer (SMPS) was used to measure the size distribution, number density, and volume fraction of PM. Temperature measurements in the exhaust pipe and dilution tunnel reveal the degree of mixing between exhaust and dilution air, the effect of flowrate on heat transfer from undiluted and diluted exhaust to the environment, and the minimum permissible dilution ratio for a maximum sample temperature of 52°C.
Technical Paper

Liquid Fuel Visualization Using Laser-Induced Fluoresence During Cold Start

1998-10-19
982466
The presence of liquid fuel inside the engine cylinder is believed to be a strong contributor to the high levels of hydrocarbon emissions from spark ignition (SI) engines during the warm-up period. Quantifying and determining the fate of the liquid fuel that enters the cylinder is the first step in understanding the process of emissions formation. This work uses planar laser induced fluorescence (PLIF) to visualize the liquid fuel present in the cylinder. The fluorescing compounds in indolene, and mixtures of iso-octane with dopants of different boiling points (acetone and 3-pentanone) were used to trace the behavior of different volatility components. Images were taken of three different planes through the engine intersecting the intake valve region. A closed valve fuel injection strategy was used, as this is the strategy most commonly used in practice. Background subtraction and masking were both performed to reduce the effect of any spurious fluorescence.
Technical Paper

Effect of Engine Operating Parameters on Hydrocarbon Oxidation in the Exhaust Port and Runner of a Spark-Ignited Engine

1995-02-01
950159
The effect of engine operating parameters (speed, spark timing, and fuel-air equivalence ratio [Φ]) on hydrocarbon (HC) oxidation within the cylinder and exhaust system is examined using propane or isooctane fuel. Quench gas (CO2) is introduced at two locations in the exhaust system (exhaust valve or port exit) to stop the oxidation process. Increasing the speed from 1500 to 2500 RPM at MBT spark timing decreases the total, cylinder-exit HC emissions by ∼50% while oxidation in the exhaust system remains at 40% for both fuels. For propane fuel at 1500 rpm, increasing Φ from 0.9 (fuel lean) to 1.1 (fuel rich) reduces oxidation in the exhaust system from 42% to 26%; at 2500 RPM, exhaust system oxidation decreases from 40% to approximately 0% for Φ = 0.9 and 1.1, respectively. Retarded spark increases oxidation in the cylinder and exhaust system for both fuels. Decreases in total HC emissions are accompanied by increased olefinic content and atmospheric reactivity.
Technical Paper

Early Spray Development in Gasoline Direct-Injected Spark Ignition Engines

1998-02-23
980160
The characteristics of the early development of fuel sprays from pressure swirl atomizer injectors of the type used in direct injection gasoline engines is investigated. Planar laser-induced fluorescence (PLIF) was used to visualize the fuel distribution inside a firing optical engine. The early spray development of three different injectors at three different fuel pressures (3, 5, and 7 MPa) was followed as a function of time in 30 μsec intervals. Four phases could be identified: 1) A delay phase between the rising edge of the injection pulse and the first occurrence of fuel in the combustion chamber, 2) A solid jet or pre-spray phase, in which a poorly atomized stream of liquid fuel during the first 150 μsec of the injection. 3) A wide hollow cone phase, separation of the liquid jet into a hollow cone spray once sufficient tangential velocity has been established and 4) A fully developed spray, in which the spray cone angle is narrowed due to a low pressure zone at the center.
Technical Paper

The Effect of Operating Conditions at Idle in the S.I. Engine

1997-10-01
972990
A gasoline engine with an electronically controlled fuel injection system has substantially better fuel economy and lower emissions than a carburetted engine. In general, the stability of engine operation is improved with fuel injector, but the stability of engine operation at idle is not improved compared with a carburetted gasoline engine. In addition, the increase in time that an engine is at idle due to traffic congestion has an effect on the engine stability and vehicle reliability. Therefore, in this research, we will study the influence of fuel injection timing, spark timing, dwell angle, and air-fuel ratio on engine stability at idle.
Technical Paper

Visualization of Mixture Preparation in a Port-Fuel Injection Engine During Engine Warm-up

1995-10-01
952481
The fuel injection process in the port of a firing 4-valve SI engine at part load and 25°C head temperature was observed by a high speed video camera. Fuel was injected when the valve was closed. The reverse blow-down flow when the intake valve opens has been identified as an important factor in the mixture preparation process because it not only alters the thermal environment of the intake port, but also strip-atomizes the liquid film at the vicinity of the intake valve and carries the droplets away from the engine. In a series of “fuel-on” experiments, the fuel injected in the current cycle was observed to influence the fuel delivery to the engine in the subsequent cycles.
Technical Paper

Fuel-Air Mixing and Diesel Combustion in a Rapid Compression Machine

1988-02-01
880206
The influence of charge motion and fuel injection characteristics on diesel combustion was studied in a rapid compression machine (RCM), a research apparatus that simulates the direct-injection diesel in-cylinder environment. An experimental data base was generated in which inlet air flow conditions (temperature, velocity, swirl level) and fuel injection pressure were independently varied. High-speed movies using both direct and shadowgraph photography were taken at selected operating conditions. Cylinder pressure data were analyzed using a one-zone heat release model to calculate ignition delay times, premixed and diffusion burning rates, and cumulative heat release profiles. The photographic analysis provided data on the liquid and vapor penetration rates, fuel-air mixing, ignition characteristics, and flame spreading rates.
Technical Paper

Heat Transfer Characteristics of Impinging Diesel Sprays

1989-02-01
890439
The heat transfer characteristics of impinging diesel sprays were studied in a Rapid Compression Machine. The temporal and spatial distributions of the heat transfer around the impingement point -were measured by an array of high frequency response surface thermocouples. Simultaneously, the flow field of the combusting spray was photographed with high speed movie through the transparent head of the apparatus. The results for the auto-ignited fuel sprays were compared to those of non-combusting sprays which were carried out in nitrogen. The values of the heat flux from the combusting sprays were found to be substantially different from those of the non-combusting sprays. The difference was attribute to the radiative heat transfer and the combustion generated bulk, motion and small scale turbulence.
Technical Paper

Mixture Preparation in a SI Engine with Port Fuel Injection During Starting and Warm-Up

1992-10-01
922170
The in-cylinder hydrocarbon (HC) mole fraction was measured on a cycle-resolved basis during simulated starting and warm-up of a port-injected single-cylinder SI research engine on a dynamometer. The measurements were made with a fast-response flame ionization detector with a heated sample line. The primary parameters that influence how rapidly a combustible mixture builds up in the cylinder are the inlet pressure and the amount of fuel injected; engine speed and fuel injection schedule have smaller effects. When a significant amount of liquid fuel is present at the intake port in the starting process, the first substantial firing cycle is often preceded by a cycle with abnormally high in-cylinder HC and low compression pressure. An energy balance analysis suggests that a large amount of liquid vaporization occurs within the cylinder in this cycle.
Technical Paper

Time Resolved Measurements of Exhaust Composition and Flow Rate in a Wankel Engine

1975-02-01
750024
Measurements were made of exhaust histories of the following species: unburned hydrocarbons (HC), carbon monoxide, carbon dioxide, oxygen, and nitric oxide (NO). The measurements show that the exhaust flow can be divided into two distinct phases: a leading gas low in HC and high in NO followed by a trailing gas high in HC and low in NO. Calculations of time resolved equivalence ratio throughout the exhaust process show no evidence of a stratified combustion. The exhaust mass flow rate is time resolved by forcing the flow to be locally quasi-steady at an orifice placed in the exhaust pipe. The results with the quasi-steady assumption are shown to be consistent with the measurements. Predictions are made of time resolved mass flow rate which compare favorably to the experimental data base. The composition and flow histories provide sufficient information to calculate the time resolved flow rates of the individual species measured.
Technical Paper

Modeling the Spark Ignition Engine Warm-Up Process to Predict Component Temperatures and Hydrocarbon Emissions

1991-02-01
910302
In order to understand better the operation of spark-ignition engines during the warm-up period, a computer model had been developed which simulates the thermal processes of the engine. This model is based on lumped thermal capacitance methods for the major engine components, as well as the exhaust system. Coolant and oil flows, and their respective heat transfer rates are modeled, as well as friction heat generation relations. Piston-liner heat transfer is calculated based on a thermal resistance method, which includes the effects of piston and ring material and design, oil film thickness, and piston-liner crevice. Piston/liner crevice changes are calculated based on thermal expansion rates and are used in conjunction with a crevice-region unburned hydrocarbon model to predict the contribution to emissions from this source.
Technical Paper

Photographic and Performance Studies of Diesel Combustion With a Rapid Compression Machine

1974-02-01
740948
Photographic and performance studies with a Rapid Compression Machine at the Massachusetts Institute of Technology have been used to develop insight into the role of mixing in diesel engine combustion. Combustion photographs and performance data were analyzed. The experiments simulate a single fuel spray in an open chamber diesel engine with direct injection. The effects of droplet formation and evaporation on mixing are examined. It is concluded that mixing is controlled by the rate of entrainment of air by the fuel spray rather than the dynamics of single droplets. Experimental data on the geometry of a jet in a quiescent combustion chamber were compared with a two-phase jet model; a jet model based on empirical turbulent entrainment coefficients was developed to predict the motion of a fuel jet in a combustion chamber with swirl. Good agreement between theory and experiment was obtained.
Technical Paper

Lab Study of Urea Deposit Formation and Chemical Transformation Process of Diesel Aftertreatment System

2017-03-28
2017-01-0915
Diesel exhaust fluid, DEF, (32.5 wt.% urea aqueous solution) is widely used as the NH3 source for selective catalytic reduction (SCR) of NOx in diesel aftertreatment systems. The transformation of sprayed liquid phase DEF droplets to gas phase NH3 is a complex physical and chemical process. Briefly, it experiences water vaporization, urea thermolysis/decomposition and hydrolysis. Depending on the DEF doser, decomposition reaction tube (DRT) design and operating conditions, incomplete decomposition of injected urea could lead to solid urea deposit formation in the diesel aftertreatment system. The formed deposits could lead to engine back pressure increase and DeNOx performance deterioration etc. The formed urea deposits could be further transformed to chemically more stable substances upon exposure to hot exhaust gas, therefore it is critical to understand this transformation process.
Technical Paper

Real World Performance of an Onboard Gasoline/Ethanol Separation System to Enable Knock Suppression Using an Octane-On-Demand Fuel System

2018-04-03
2018-01-0879
Higher compression ratio and turbocharging, with engine downsizing can enable significant gains in fuel economy but require engine operating conditions that cause engine knock under high load. Engine knock can be avoided by supplying higher-octane fuel under such high load conditions. This study builds on previous MIT papers investigating Octane-On-Demand (OOD) to enable a higher efficiency, higher-boost higher compression-ratio engine. The high-octane fuel for OOD can be obtained through On-Board-Separation (OBS) of alcohol blended gasoline. Fuel from the primary fuel tank filled with commercially available gasoline that contains 10% by volume ethanol (E10) is separated by an organic membrane pervaporation process that produces a 30 to 90% ethanol fuel blend for use when high octane is needed. In addition to previous work, this paper combines modeling of the OBS system with passenger car and medium-duty truck fuel consumption and octane requirements for various driving cycles.
Technical Paper

LOOP SCAVENGING versus THROUGH SCAVENGING of TWO-STROKE ENGINES

1958-01-01
580044
THIS paper reports the latest investigation of the relative merits of loop scavenging versus through scavenging. The authors hope that the conditions of the work permitted an objective evaluation of the two types of engines. The results of the study may be summarized as follows: 1. With symmetrical timing, neither cylinder shows significant advantage in trapping efficiency. 2. With symmetrical timing, the best ratio of exhaust-port to inlet-port effective area seems to be about 0.6. 3. Unsymmetrical timing is an effective method of improving trapping efficiency. 4. The value of net indicated fuel economy shows no significant difference between the two cylinders. The authors point out that because the areas were equal it is unlikely that the optimum port design of each type was used in comparing the cylinders. If optimum porting had been used, the two types might have shown more difference.
Technical Paper

Time-Resolved Measurements of Hydrocarbon Mass Flowrate in the Exhaust of a Spark-Ignition Engine

1972-02-01
720112
Experimental measurements of the instantaneous exhaust gas temperature, mass flowrate, and hydrocarbon concentration have been made in the exhaust of a single cylinder research engine. The temperature measurements were accomplished using an infrared optical technique and observing the radiation of the exhaust gas at the 4.4 μm band of CO2. Instantaneous exhaust gas mass flowrates were monitored by placing a restriction in the exhaust manifold and measuring the instantaneous pressures across the restriction. Time-resolved hydrocarbon concentrations were measured using a fast-acting sampling valve with an open time of 2 ms. From these measurements, the hydrocarbon mass flowrate is calculated as a function of crank angle.
Technical Paper

Modeling Study of Metal Fiber Diesel Particulate Filter Performance

2015-04-14
2015-01-1047
Sintered metal fiber (SMF) diesel particulate filters (DPF) has more than one order of magnitude lower pressure drop compared to a granular or reaction-born DPF of the same (clean) filtration efficiency. To better understand the filtration process and optimize the filter performance, metal fiber filter models are developed in this study. The major previous theoretical models for clean fibrous filter are summarized and compared with experimental data. Furthermore, a metal fiber DPF soot loading model, using similar concept developed in high efficiency particulate air (HEPA) filter modeling, is built to simulate filter soot loading performance. Compared with experimental results, the soot loading model has relatively good predictions of filter pressure drop and filtration efficiency.
Technical Paper

Scavenging the 2-Stroke Engine

1954-01-01
540258
THE indicated output of a 2-stroke engine is primarily dependent upon the success with which the products of combustion are driven from the cylinder and are replaced by fresh air or mixture during the scavenging period. Such replacement must, of course, be accomplished with a minimum of blower power. This paper deals with various aspects of 2-stroke research conducted at M.I.T. during the past 10 years. Among the subjects discussed are the methods used in the prediction and measurement of scavenging efficiency, and the effect of engine design and operating variables on the scavenging blower requirements as reflected by the scavenging ratio.
Technical Paper

A Performance Model for the Texaco Controlled Combustion, Stratified Charge Engine

1976-02-01
760116
A model has been developed to predict the performance of the Texaco Controlled Combustion, Stratified Charge Engine starting from engine geometry, fuel characteristics and the operating conditions. This performance model divides the engine cycle into the following phases: Intake, Compression, Rapid Combustion, Mixing-Dominated Expansion, Heat-Transfer Dominated Expansion and Exhaust. During the rapid combustion phase, the rate of heat release is assumed to be controlled by the rate of fuel injection and the air-to-fuel ratio. The burning rate in the mixing controlled stage appears to be dominated by the rate of entrainment of the surrounding gas by the plume of burning products and this rate is assumed to be controlled by the turbulent eddy entrainment velocity. A plume geometry model has been developed to obtain the surface area of the plume for entrainment during the mixing dominated phase.
X