Refine Your Search

Search Results

Viewing 1 to 12 of 12
Technical Paper

Time-Resolved, Speciated Emissions from an SI Engine During Starting and Warm-Up

1996-10-01
961955
A sampling system was developed to measure the evolution of the speciated hydrocarbon emissions from a single-cylinder SI engine in a simulated starting and warm-up procedure. A sequence of exhaust samples was drawn and stored for gas chromatograph analysis. The individual sampling aperture was set at 0.13 s which corresponds to ∼ 1 cycle at 900 rpm. The positions of the apertures (in time) were controlled by a computer and were spaced appropriately to capture the warm-up process. The time resolution was of the order of 1 to 2 cycles (at 900 rpm). Results for four different fuels are reported: n-pentane/iso-octane mixture at volume ratio of 20/80 to study the effect of a light fuel component in the mixture; n-decane/iso-octane mixture at 10/90 to study the effect of a heavy fuel component in the mixture; m-xylene and iso-octane at 25/75 to study the effect of an aromatics in the mixture; and a calibration gasoline.
Technical Paper

Analysis of Fuel Behavior in the Spark-Ignition Engine Start-Up Process

1995-02-01
950678
An analysis method for characterizing fuel behavior during spark-ignition engine starting has been developed and applied to several sets of start-up data. The data sets were acquired from modern production vehicles during room temperature engine start-up. Two different engines, two control schemes, and two engine temperatures (cold and hot) were investigated. A cycle-by-cycle mass balance for the fuel was used to compare the amount of fuel injected with the amount burned or exhausted as unburned hydrocarbons. The difference was measured as “fuel unaccounted for”. The calculation for the amount of fuel burned used an energy release analysis of the cylinder pressure data. The results include an overview of starting behavior and a fuel accounting for each data set Overall, starting occurred quickly with combustion quality, manifold pressure, and engine speed beginning to stabilize by the seventh cycle, on average.
Technical Paper

The Effect of Operating Conditions at Idle in the S.I. Engine

1997-10-01
972990
A gasoline engine with an electronically controlled fuel injection system has substantially better fuel economy and lower emissions than a carburetted engine. In general, the stability of engine operation is improved with fuel injector, but the stability of engine operation at idle is not improved compared with a carburetted gasoline engine. In addition, the increase in time that an engine is at idle due to traffic congestion has an effect on the engine stability and vehicle reliability. Therefore, in this research, we will study the influence of fuel injection timing, spark timing, dwell angle, and air-fuel ratio on engine stability at idle.
Technical Paper

Flame Shape Determination Using an Optical-Fiber Spark Plug and a Head-Gasket Ionization Probe

1994-10-01
941987
A method for determining the flame contour based on the flame arrival time at the fiber optic (FO) spark plug and at the head gasket ionization probe (IP) locations has been developed. The experimental data were generated in a single-cylinder Ricardo Hydra spark-ignition engine. The head gasket IP, constructed from a double-sided copper-clad circuit board, detects the flame arrival time at eight equally spaced locations at the top of the cylinder liner. Three other IP's were also installed in the cylinder head to provide additional intermediate data on flame location and arrival time. The FO spark plug consists of a standard spark plug with eight symmetrically spaced optical fibers located in the ground casing of the plug. The cylinder pressure was recorded simultaneously with the eleven IP signals and the eight optical signals using a high-speed PC-based data acquisition system.
Technical Paper

Experimental Investigation of Smoke Emission Dependent upon Engine Operating Conditions

1997-05-01
971658
Smoke is emitted in diesel engines because fuel injected into the combustion chamber burns with insufficient oxygen. The emission smoke from diesel engines is a very important air pollution problem. Smoke emission, which is believed to be largely related to the diffusion combustion in diesel engines, results from pyrolysis of fuel not mixed with air. Therefore, the smoke emission is dependent on diffusion combustion phenomena, which are controlled by engine parameters. This paper presents an analysis of combustion by relating the smoke emission with heat release in diesel engines. An analysis is made of the diffusion combustion quantity, the smoke emission, and the fraction of diffusion combustion as related to the engine parameters which are air-fuel ratio, injection timing, and engine speed.
Technical Paper

Mixture Preparation in a SI Engine with Port Fuel Injection During Starting and Warm-Up

1992-10-01
922170
The in-cylinder hydrocarbon (HC) mole fraction was measured on a cycle-resolved basis during simulated starting and warm-up of a port-injected single-cylinder SI research engine on a dynamometer. The measurements were made with a fast-response flame ionization detector with a heated sample line. The primary parameters that influence how rapidly a combustible mixture builds up in the cylinder are the inlet pressure and the amount of fuel injected; engine speed and fuel injection schedule have smaller effects. When a significant amount of liquid fuel is present at the intake port in the starting process, the first substantial firing cycle is often preceded by a cycle with abnormally high in-cylinder HC and low compression pressure. An energy balance analysis suggests that a large amount of liquid vaporization occurs within the cylinder in this cycle.
Technical Paper

Performance and NOx Emissions Modeling of a Jet Ignition Prechamber Stratified Charge Engine

1976-02-01
760161
The development of a cycle simulation model for the jet ignition prechamber stratified charge engine is described. Given the engine geometry, load, speed, air-fuel ratios and pressures and temperatures in the two intakes, flow ratio and a suitable combustion model, the cycle simulation predicts engine indicated efficiency and NO emissions. The relative importance of the parameters required to define the combustion model are then determined, and values for ignition delay and burn angle are obtained by matching predicted and measured pressure-time curves. The variation in combustion parameters with engine operating variables is then examined. Predicted and measured NO emissions are compared, and found to be in reasonable agreement over a wide range of engine operation. The relative contribution of the prechamber NO to total exhaust NO is then examined, and in the absence of EGR, found to be the major source of NO for overall air-fuel ratios leaner than 22:1.
Technical Paper

A New Approach to Ethanol Utilization: High Efficiency and Low NOx in an Engine Operating on Simulated Reformed Ethanol

2008-10-06
2008-01-2415
The use of hydrogen as a fuel supplement for lean-burn engines at higher compression ratios has been studied extensively in recent years, with good promise of performance and efficiency gains. With the advances in reformer technology, the use of a gaseous fuel stock, comprising of substantially higher fractions of hydrogen and other flammable reformate species, could provide additional improvements. This paper presents the performance and emission characteristics of a gas mixture of equal volumes of hydrogen, CO, and methane. It has recently been reported that this gas mixture can be produced by reforming of ethanol at comparatively low temperature, around 300C. Experiments were performed on a 1.8-liter passenger-car Nissan engine modified for single-cylinder operation. Special pistons were made so that compression ratios ranging from CR= 9.5 to 17 could be used. The lean limit was extended beyond twice stoichiometric (up to lambda=2.2).
Technical Paper

The Theory of Cost Risk in Design

1999-03-01
1999-01-0495
In a recent paper (Hoult & Meador, [1]) a novel method of estimating the costs of parts, and assemblies of parts, was presented. This paper proposed that the metric for increments of cost was the function log (dimension/tolerance). Although such log functions have a history,given in [1], starting with Boltzman and Shannon, it is curious that it arises in cost models. In particular, the thermodynamic basis of information theory, given by Shannon [2], seems quite implausible in the present context. In [1], we called the cost theory “Complexity Theory”, mainly to distinguish it from information theory. A major purpose of the present paper is to present a rigorous argument of how the log function arises in the present context. It happens that the agrument hinges on two key issues: properties of the machine making or assembling the part, and a certain limit process. Neither involves thermodynamic reasoning.
Technical Paper

Air-Fuel Ratio Measurement Diagnostics During Cranking and Startup in a Port-Fuel-Injected Spark-Ignition Engine

2004-06-08
2004-01-1915
Cranking and startup fuel control has become increasingly important due to ever tightening emission requirements. Additionally, engine-off strategies during idle will require substantially more engine startup events with the associated need for very clean starts. Thus, knowledge of an engine's Air-Fuel Ratio (AFR) during its early cycles is necessary in order to optimize cranking and startup fueling. This paper examines and compares two methods of measuring an engine's AFR during engine startup (approximately the first second of operation); an in-cylinder technique using a Fast Flame Ionization Detector (FFID) and the conventional exhaust based Universal Exhaust Gas Oxygen (UEGO) sensor method. Engine starts using a Ford Zetec engine were performed at three different temperatures (0, 20 and 90 C) as well as different initial engine starting positions.
Technical Paper

An Overview of Hydrocarbon Emissions Mechanisms in Spark-Ignition Engines

1993-10-01
932708
This paper provides an overview of spark-ignition engine unburned hydrocarbon emissions mechanisms, and then uses this framework to relate measured engine-out hydrocarbon emission levels to the processes within the engine from which they result. Typically, spark-ignition engine-out HC levels are 1.5 to 2 percent of the gasoline fuel flow into the engine; about half this amount is unburned fuel and half is partially reacted fuel components. The different mechanisms by which hydrocarbons in the gasoline escape burning during the normal engine combustion process are described and approximately quantified. The in-cylinder oxidation of these HC during the expansion and exhaust processes, the fraction which exit the cylinder, and the fraction oxidized in the exhaust port and manifold are also estimated.
Journal Article

The Effects of Charge Motion and Laminar Flame Speed on Late Robust Combustion in a Spark-Ignition Engine

2010-04-12
2010-01-0350
The effects of charge motion and laminar flame speeds on combustion and exhaust temperature have been studied by using an air jet in the intake flow to produce an adjustable swirl or tumble motion, and by replacing the nitrogen in the intake air by argon or CO₂, thereby increasing or decreasing the laminar flame speed. The objective is to examine the "Late Robust Combustion" concept: whether there are opportunities for producing a high exhaust temperature using retarded combustion to facilitate catalyst warm-up, while at the same time, keeping an acceptable cycle-to-cycle torque variation as measured by the coefficient of variation (COV) of the net indicated mean effective pressure (NIMEP). The operating condition of interest is at the fast idle period of a cold start with engine speed at 1400 RPM and NIMEP at 2.6 bar. A fast burn could be produced by appropriate charge motion. The combustion phasing is primarily a function of the spark timing.
X