Refine Your Search

Topic

Search Results

Technical Paper

Space Life Support from the Cellular Perspective

2001-07-09
2001-01-2229
Determining the fundamental role of gravity in vital biological systems in space is one of six science and research areas that provides the philosophical underpinning for why NASA exists. The study of cells, tissues, and microorganisms in a spaceflight environment holds the promise of answering multiple intriguing questions about how gravity affects living systems. To enable these studies, specimens must be maintained in an environment similar to that used in a laboratory. Cell culture studies under normal laboratory conditions involve maintaining a highly specialized environment with the necessary temperature, humidity control, nutrient, and gas exchange conditions. These same cell life support conditions must be provided by the International Space Station (ISS) Cell Culture Unit (CCU) in the unique environment of space. The CCU is a perfusion-based system that must function in microgravity, at unit gravity (1g) on earth, and from 0.1g up to 2g aboard the ISS centrifuge rotor.
Technical Paper

Liquid Fuel Transport Mechanisms into the Cylinder of a Firing Port-Injected SI Engine During Start Up

1997-02-24
970865
The occurrence of liquid fuel in the cylinder of automotive internal combustion engines is believed to be an important source of exhaust hydrocarbon (HC) emissions, especially during the warm-up process following an engine start up. In this study a Phase Doppler Particle Analyzer (PDPA) has been used in a transparent flow visualization combustion engine in order to investigate the phenomena which govern the transport of liquid fuel into the cylinder during a simulated engine start up process. Using indolene fuel, the engine was started up from room temperature and run for 90 sec on each start up simulation. The size and velocity of the liquid fuel droplets entering the cylinder were measured as a function of time and crank angle position during these start up processes. The square-piston transparent engine used gave full optical access to the cylinder head region, so that these droplet characteristics could be measured in the immediate vicinity of the intake valve.
Technical Paper

Liquid Fuel Visualization Using Laser-Induced Fluoresence During Cold Start

1998-10-19
982466
The presence of liquid fuel inside the engine cylinder is believed to be a strong contributor to the high levels of hydrocarbon emissions from spark ignition (SI) engines during the warm-up period. Quantifying and determining the fate of the liquid fuel that enters the cylinder is the first step in understanding the process of emissions formation. This work uses planar laser induced fluorescence (PLIF) to visualize the liquid fuel present in the cylinder. The fluorescing compounds in indolene, and mixtures of iso-octane with dopants of different boiling points (acetone and 3-pentanone) were used to trace the behavior of different volatility components. Images were taken of three different planes through the engine intersecting the intake valve region. A closed valve fuel injection strategy was used, as this is the strategy most commonly used in practice. Background subtraction and masking were both performed to reduce the effect of any spurious fluorescence.
Technical Paper

A Look at the Automotive-Turbine Regenerator System and Proposals to Improve Performance and Reduce Cost

1997-02-24
970237
The adoption of turbine engines for automotive power plants has been hampered by the high cost, high leakage and high wear rate of present designs of ceramic-matrix regenerators. Proposals are made and analyzed here for design directions to achieve substantial improvements in all three areas. These include lower-cost extruded and pressed matrices; and clamping seals coupled with incremental movement of the rotary-regenerator matrix.
Technical Paper

Predicting Product Manufacturing Costs from Design Attributes: A Complexity Theory Approach

1996-02-01
960003
This paper contains both theorems and correlations based on the idea that there is a uniform metric for measuring the complexity of mechanical parts. The metric proposed is the logarithm of dimension divided by tolerance. The theorems prove that, on the average, for a given manufacturing process, the time to fabricate is simply proportional to this metric. We show corrleations for manual turning (machine lathe process), manual milling (machine milling process), and the lay-up of composite stringers. In each case the accuracy of the time estimate is as good as that of traditional cost estimation methods, but the effort is much less. The coefficient for composite lay-up compares well to that obtained from basic physiological data (Fitts Law).
Technical Paper

Development of a Time and Space Resolved Sampling Probe Diagnostic for Engine Exhaust Hydrocarbons

1996-02-01
961002
In order to understand how unburned hydrocarbons emerge from SI engines and, in particular, how non-fuel hydrocarbons are formed and oxidized, a new gas sampling technique has been developed. A sampling unit, based on a combination of techniques used in the Fast Flame Ionization Detector (FFID) and wall-mounted sampling valves, was designed and built to capture a sample of exhaust gas during a specific period of the exhaust process and from a specific location within the exhaust port. The sampling unit consists of a transfer tube with one end in the exhaust port and the other connected to a three-way valve that leads, on one side, to a FFID and, on the other, to a vacuum chamber with a high-speed solenoid valve. Exhaust gas, drawn by the pressure drop into the vacuum chamber, impinges on the face of the solenoid valve and flows radially outward.
Technical Paper

3D Vortex Simulation of Intake Flow in a Port-Cylinder with a Valve Seat and a Moving Piston

1996-05-01
961195
A Lagrangian random vortex-boundary element method has been developed for the simulation of unsteady incompressible flow inside three-dimensional domains with time-dependent boundaries, similar to IC engines. The solution method is entirely grid-free in the fluid domain and eliminates the difficult task of volumetric meshing of the complex engine geometry. Furthermore, due to the Lagrangian evaluation of the convective processes, numerical viscosity is virtually removed; thus permitting the direct simulation of flow at high Reynolds numbers. In this paper, a brief description of the numerical methodology is given, followed by an example of induction flow in an off-centered port-cylinder assembly with a harmonically driven piston and a valve seat situated directly below the port. The predicted flow is shown to resemble the flow visualization results of a laboratory experiment, despite the crude approximation used to represent the geometry.
Technical Paper

The Effects of Crevices on the Engine-Out Hydrocarbon Emissions in SI Engines

1994-03-01
940306
To understand the effects of crevices on the engine-out hydrocarbon emissions, a series of engine experiments was carried out with different piston crevice volumes and with simulated head gasket crevices. The engine-out HC level was found to be modestly sensitive to the piston crevice size in both the warmed-up and the cold engines, but more sensitive to the crevice volume in the head gasket region. A substantial decrease in HC in the cold-to-warm-up engine transition was observed and is attributed mostly to the change in port oxidation.
Technical Paper

Liquid Gasoline Behavior in the Engine Cylinder of a SI Engine

1994-10-01
941872
The liquid fuel entry into the cylinder and its subsequent behavior through the combustion cycle were observed by a high speed CCD camera in a transparent engine. The videos were taken with the engine firing under cold conditions in a simulated start-up process, at 1,000 RPM and intake manifold pressure of 0.5 bar. The variables examined were the injector geometry, injector type (normal and air-assisted), injection timing (open- and closed-valve injection), and injected air-to-fuel ratios. The visualization results show several important and unexpected features of the in-cylinder fuel behavior: 1) strip-atomization of the fuel film by the intake flow; 2) squeezing of fuel film between the intake valve and valve seat at valve closing to form large droplets; 3)deposition of liquid fuel as films distributed on the intake valve and head region. Some of the liquid fuel survives combustion into the next cycle.
Technical Paper

The Effect of Operating Conditions at Idle in the S.I. Engine

1997-10-01
972990
A gasoline engine with an electronically controlled fuel injection system has substantially better fuel economy and lower emissions than a carburetted engine. In general, the stability of engine operation is improved with fuel injector, but the stability of engine operation at idle is not improved compared with a carburetted gasoline engine. In addition, the increase in time that an engine is at idle due to traffic congestion has an effect on the engine stability and vehicle reliability. Therefore, in this research, we will study the influence of fuel injection timing, spark timing, dwell angle, and air-fuel ratio on engine stability at idle.
Technical Paper

Flame Shape Determination Using an Optical-Fiber Spark Plug and a Head-Gasket Ionization Probe

1994-10-01
941987
A method for determining the flame contour based on the flame arrival time at the fiber optic (FO) spark plug and at the head gasket ionization probe (IP) locations has been developed. The experimental data were generated in a single-cylinder Ricardo Hydra spark-ignition engine. The head gasket IP, constructed from a double-sided copper-clad circuit board, detects the flame arrival time at eight equally spaced locations at the top of the cylinder liner. Three other IP's were also installed in the cylinder head to provide additional intermediate data on flame location and arrival time. The FO spark plug consists of a standard spark plug with eight symmetrically spaced optical fibers located in the ground casing of the plug. The cylinder pressure was recorded simultaneously with the eleven IP signals and the eight optical signals using a high-speed PC-based data acquisition system.
Technical Paper

Experimental Investigation of Smoke Emission Dependent upon Engine Operating Conditions

1997-05-01
971658
Smoke is emitted in diesel engines because fuel injected into the combustion chamber burns with insufficient oxygen. The emission smoke from diesel engines is a very important air pollution problem. Smoke emission, which is believed to be largely related to the diffusion combustion in diesel engines, results from pyrolysis of fuel not mixed with air. Therefore, the smoke emission is dependent on diffusion combustion phenomena, which are controlled by engine parameters. This paper presents an analysis of combustion by relating the smoke emission with heat release in diesel engines. An analysis is made of the diffusion combustion quantity, the smoke emission, and the fraction of diffusion combustion as related to the engine parameters which are air-fuel ratio, injection timing, and engine speed.
Technical Paper

Visualization of Mixture Preparation in a Port-Fuel Injection Engine During Engine Warm-up

1995-10-01
952481
The fuel injection process in the port of a firing 4-valve SI engine at part load and 25°C head temperature was observed by a high speed video camera. Fuel was injected when the valve was closed. The reverse blow-down flow when the intake valve opens has been identified as an important factor in the mixture preparation process because it not only alters the thermal environment of the intake port, but also strip-atomizes the liquid film at the vicinity of the intake valve and carries the droplets away from the engine. In a series of “fuel-on” experiments, the fuel injected in the current cycle was observed to influence the fuel delivery to the engine in the subsequent cycles.
Technical Paper

M.I.T. Stirling-Cycle Heat Transfer Apparatus

1992-08-03
929465
The paper describes the design and construction of a two cylinder apparatus to measure heat transfer under conditions of oscillating pressure and oscillating flow such as found in Stirling-cycle machines. The apparatus consists of two large single stage air compressors joined by a rigid drive shaft between the two crank shafts. The compressors are 27.94 cm (11-in) diameter by 22.86 cm (9-in) stroke. The apparatus is powered by a 25 HP variable speed DC motor. Belts and a jack shaft provide wide speed ranges. The test section, which is connected between the compressor cylinders, is a 44.45 mm (1.75-in) diameter tube and about 254 cm (100-in) long. The test section is configured for measuring wall heat flux, and gas pressure as a function of time. An LDV system is being installed for measurement of gas velocity as a function of time and position. A fast response micro thermocouple measures gas temperature as a function of time and position.
Technical Paper

A CAD-Driven Flexible Forming System for Three-Dimensional Sheet Metal Parts

1993-03-01
930282
A novel system for the forming of three dimensional sheet metal parts is described that can form a variety of part shapes without the need for fixed tooling, and given only geometry (CAD) information about the desired part. The central elements of this system are a tooling concept based on a programmable discrete die surface and closed-loop shape control. The former give the process the degrees of freedom to change shape rapidly, and the latter is used to insure that the correct shape is formed with a minimum of forming trials. A 540 kN (60 ton) lab press has been constructed with a 0.3 m (12 in) square pair of discrete tools that can be rapidly re-shaped between forming trials. The shape control system uses measured part shapes to determine a shape error and to correct the tooling shape. This correction is based on a unique “Deformation Transfer Function” approach using a spatial frequency decomposition of the surface.
Technical Paper

Performance and NOx Emissions Modeling of a Jet Ignition Prechamber Stratified Charge Engine

1976-02-01
760161
The development of a cycle simulation model for the jet ignition prechamber stratified charge engine is described. Given the engine geometry, load, speed, air-fuel ratios and pressures and temperatures in the two intakes, flow ratio and a suitable combustion model, the cycle simulation predicts engine indicated efficiency and NO emissions. The relative importance of the parameters required to define the combustion model are then determined, and values for ignition delay and burn angle are obtained by matching predicted and measured pressure-time curves. The variation in combustion parameters with engine operating variables is then examined. Predicted and measured NO emissions are compared, and found to be in reasonable agreement over a wide range of engine operation. The relative contribution of the prechamber NO to total exhaust NO is then examined, and in the absence of EGR, found to be the major source of NO for overall air-fuel ratios leaner than 22:1.
Technical Paper

More Efficient Combustion in Small Open Chamber Diesel Engines

1972-02-01
720775
Until quite recently, it appeared that there was an effective lower limit on bore size in open-chamber diesel engines. This paper presents a technique for improving combustion in the small open-chamber diesel engine. Recent work at MIT on a 2-1/2 in bore, short-stroke diesel engine has demonstrated that good efficiency can be obtained through a combination of a large-hole nozzle and the use of air swirl to prevent overpenetration. There is some indication that good efficiency can be obtained over a wider operating range than standard diesel practice. A method of design analysis for this type of engine is presented, along with techniques for estimating the swirl and nozzle design parameters.
Technical Paper

Anthropometric and Blood Flow Characteristics Leading to EVA Hand Injury

2009-07-12
2009-01-2471
The aim of this study was to explore if fingernail delamination injury following EMU glove use may be caused by compression-induced blood flow occlusion in the finger. During compression tests, finger blood flow decreased more than 60%, however this occurred more rapidly for finger pad compression (4 N) than for fingertips (10 N). A pressure bulb compression test resulted in 50% and 45% decreased blood flow at 100 mmHg and 200 mmHg, respectively. These results indicate that the finger pad pressure required to articulate stiff gloves is more likely to contribute to injury than the fingertip pressure associated with tight fitting gloves.
Technical Paper

A New Approach to Ethanol Utilization: High Efficiency and Low NOx in an Engine Operating on Simulated Reformed Ethanol

2008-10-06
2008-01-2415
The use of hydrogen as a fuel supplement for lean-burn engines at higher compression ratios has been studied extensively in recent years, with good promise of performance and efficiency gains. With the advances in reformer technology, the use of a gaseous fuel stock, comprising of substantially higher fractions of hydrogen and other flammable reformate species, could provide additional improvements. This paper presents the performance and emission characteristics of a gas mixture of equal volumes of hydrogen, CO, and methane. It has recently been reported that this gas mixture can be produced by reforming of ethanol at comparatively low temperature, around 300C. Experiments were performed on a 1.8-liter passenger-car Nissan engine modified for single-cylinder operation. Special pistons were made so that compression ratios ranging from CR= 9.5 to 17 could be used. The lean limit was extended beyond twice stoichiometric (up to lambda=2.2).
Technical Paper

Modeling of the Rotary Engine Apex Seal Lubrication

2015-09-01
2015-01-2035
The Wankel rotary engine is more compact than conventional piston engines, but its oil and fuel consumption must be reduced to satisfy emission standards and customer expectations. A key step toward this goal is to develop a better understanding of the apex seal lubrication to reduce oil injection while reducing friction and maintaining adequate wear. This paper presents an apex seal dynamics model capable of estimating relative wear and predicting friction, by modeling the gas and oil flows at the seal interfaces with the rotor housing and groove flanks. Model predictions show that a thin oil film can reduce wear and friction, but to a limited extent as the apex seal running face profile is sharp due to the engine kinematics.
X