Refine Your Search

Search Results

Viewing 1 to 15 of 15
Technical Paper

Inverse Method for Measuring Weld Temperatures during Resistance Spot Welding

A new monitoring system predicts the progression of welding temperature fields during resistance spot welding. The system captures welding voltages and currents to predict contact diameters and simulate temperature fields. The system accurately predicts fusion lines and heat-affected zones. Accuracy holds even for electrode tips used for a few thousand welds of zinc coated steels.
Technical Paper

Economic and Environmental Tradeoffs in New Automotive Painting Technologies

Painting is the most expensive unit operation in automobile manufacturing and the source of over 90 percent of the air, water and solid waste emissions at the assembly plant. While innovative paint technologies such as waterborne or powder paints can potentially improve plant environmental performance, implementing these technologies often requires major capital investment. A process-based technical cost model was developed for examining the environmental and economic implications of automotive painting at the unit operation level. The tradeoffs between potential environmental benefits and their relative costs are evaluated for current and new technologies.
Technical Paper

A Study of Cycle-to-Cycle Variations in SI Engines Using a Modified Quasi-Dimensional Model

This paper describes the use of a modified quasi-dimensional spark-ignition engine simulation code to predict the extent of cycle-to-cycle variations in combustion. The modifications primarily relate to the combustion model and include the following: 1. A flame kernel model was developed and implemented to avoid choosing the initial flame size and temperature arbitrarily. 2. Instead of the usual assumption of the flame being spherical, ellipsoidal flame shapes are permitted in the model when the gas velocity in the vicinity of the spark plug during kernel development is high. Changes in flame shape influence the flame front area and the interaction of the enflamed volume with the combustion chamber walls. 3. The flame center shifts due to convection by the gas flow in the cylinder. This influences the flame front area through the interaction between the enflamed volume and the combustion chamber walls. 4. Turbulence intensity is not uniform in cylinder, and varies cycle-to-cycle.
Technical Paper

Parametric Analysis of Resistance Spot Welding Lobe Curve

A linearized lumped parameter heat balance model was developed and is discussed for the general case of resistance welding to see the effects of each parameter on the lobe shape. The parameters include material properties, geometry of electrodes and work piece, weld time and current, and electrical and thermal contact characteristics. These are then related to heat dissipation in the electrodes and the work piece. The results indicate that the ratio of thermal conductivity and heat capacity to electrical resistivity is a characteristic number which is representative of the ease of spot weldability of a given material. The increases in thermal conductivity and heat capacity of the sheet metal increase the lobe width while increases in electrical resistivity decrease the lobe width. Inconsistencies in the weldability of thin sheets and the wider lobe width at long welding times can both be explained by the heat dissipation characteristics.
Technical Paper

Small Scale Research in Automobile Aerodynamics

This paper describes a three component strain gage balance designed to measure aerodynamic forces exerted on small automobile models when subjected to turbulence in an experimental wind tunnel. The instrument is described and the details of obtaining values with it are fully explained. Although tests were conducted on these models at quarter-scale Reynolds number, results agree closely with similar tests on larger models. The balance makes practical some unusual preliminary investigations before developing full-scale prototypes.
Technical Paper

Metallurgical and Process Variables Affecting the Resistance Spot Weldability of Galvanized Sheet Steels

Zinc coating integrity, composition, thickness, roughness, and the presence of Fe-Zn intermetallics are being investigated with regard to the mechanisms of weld nugget formation. This information is being used in conjunction with the optimization of the weld process parameters; such as upsloping, down-sloping, preheating, postheating, and double pulsing, to provide the widest range of acceptable welding conditions. Dynamic inspection monitoring of the welding current, voltage, force, and nugget displacement is being used to follow the progression of nugget formation and to assist in the evaluation of optimum process and material characteristics. It has been found that hot-dipped galvanized materials with coatings which have a very thin Fe-Zn alloy layer, have a wider range of acceptable welding conditions than the commercial galvannealed products, which have a fully alloyed Fe-Zn coating.
Technical Paper

Characterization of Structural, Volume and Pressure Components to Space Suit Joint Rigidity

Gas-pressurized space suits are highly resistive to astronaut movement, and this resistance has been previously explained by volume and/or structural effects. This study proposed that an additional effect, pressure effects due to compressing/expanding the internal gas during joint articulation, also inhibits mobility. EMU elbow torque components were quantified through hypobaric testing. Structural effects dominated at low joint angles, and volume effects were found to be the primary torque component at higher angles. Pressure effects were found to be significant only at high joint angles (increased flexion), contributing up to 8.8% of the total torque. These effects are predicted to increase for larger, multi-axis joints. An active regulator system was developed to mitigate pressure effects, and was found to be capable of mitigating repeated pressure spikes caused by volume changes.
Technical Paper

In Situ Control of Lubricant Properties for Reduction of Power Cylinder Friction through Thermal Barrier Coating

Lowering lubricant viscosity to reduce friction generally carries a side-effect of increased metal-metal contact in mixed or boundary lubrication, for example near top ring reversal along the engine cylinder liner. A strategy to reduce viscosity without increased metal-metal contact involves controlling the local viscosity away from top-ring-reversal locations. This paper discusses the implementation of insulation or thermal barrier coating (TBC) as a means of reducing local oil viscosity and power cylinder friction in internal combustion engines with minimal side-effects of increased wear. TBC is selectively applied to the outside diameter of the cylinder liner to increase the local oil temperature along the liner. Due to the temperature dependence of oil viscosity, the increase in temperature from insulation results in a decrease in the local oil viscosity.
Technical Paper

An Experimental Study of Piston Skirt Roughness and Profiles on Piston Friction Using the Floating Liner Engine

The piston skirt is an important contributor of friction in the piston assembly. This paper discusses friction contributions from various aspects of the piston skirt. A brief study of piston skirt patterns is presented, with little gains being made by patterning the piston skirt coating. Next the roughness of the piston skirt coating is analyzed, and results show that reducing piston skirt roughness can have positive effects on friction reduction. Finally, an introductory study into the profile of the piston skirt is presented, with the outcome being that friction reduction is possible by optimizing the skirt profile.
Technical Paper

Durable Coating Technology for Lunar Dust Protection and Mitigation

Special coatings are being developed and tested to contend with the effects of dust on the lunar surface. These coatings will have wide applicability ranging from prevention of dust buildup on solar arrays and radiator surfaces to protection of EVA space suit fabrics and visors. They will be required to be durable and functional based on application. We have started preparing abrasion-resistant transparent conductive coatings ∼40 nm thick were formed by co-deposition of titanium dioxide (TiO2) and titanium (Ti) on room-temperature glass and polycarbonate substrates using two RF magnetron sputtering sources. By adjusting Ti content, we obtained sheet resistivities in the range 104-1010 ohms/square. We have also started conducting a series of environmental tests that simulate the exposure of coated samples to dust under relevant conditions, beginning with abrasion tests using regolith simulant materials.
Technical Paper

Effect of Operating Conditions and Fuel Type on Crevice HC Emissions: Model Results and Comparison with Experiments

A one-dimensional model for crevice HC post-flame oxidation is used to calculate and understand the effect of operating parameters and fuel type (propane and isooctane) on the extent of crevice hydrocarbon and the product distribution in the post flame environment. The calculations show that the main parameters controlling oxidation are: bulk burned gas temperatures, wall temperatures, turbulent diffusivity, and fuel oxidation rates. Calculated extents of oxidation agree well with experimental values, and the sensitivities to operating conditions (wall temperatures, equivalence ratio, fuel type) are reasonably well captured. Whereas the bulk gas temperatures largely determine the extent of oxidation, the hydrocarbon product distribution is not very much affected by the burned gas temperatures, but mostly by diffusion rates. Uncertainties in both turbulent diffusion rates as well as in mechanisms are an important factor limiting the predictive capabilities of the model.
Technical Paper

Modeling and Optimizing Honing Texture for Reduced Friction in Internal Combustion Engines

Frictional losses in the piston ring-pack of an engine account for approximately half of the total frictional losses within the power cylinder of an engine. Three-dimensional honing groove texture was modeled, and its effect on piston ring-pack friction and engine brake thermal efficiency was investigated. Adverse effects on engine oil consumption and durability were also considered. Although many non-conventional cylinder liner finishes are now being developed to reduce friction and oil consumption, the effects of surface finish on ring-pack performance is not well understood. A rough surface flow simulation program was developed to calculate flow and stress factors that adjust the solution of the Reynolds equation for the effects of surface roughness as has been done in the literature. Rough surface contact between the ring and liner was modeled using a previously published methodology for asperity contact pressure estimation between rough surfaces.
Technical Paper

Reliable Processes of Simulating Liner Roughness and Its Lubrication Properties

Topology of liner finish is critical to the performance of internal combustion engines. Proper liner finish simulation processes lead to efficient engine design and research. Fourier methods have been well studied to numerically generate liner topology. However, three major issues wait to be addressed to make the generation processes feasible and reliable. First, in order to simulate real plateau honed liners, approaches should be developed to calculate accurate liner geometric parameters. These parameters are served as the input of the generation algorithm. Material ratio curve, the common geometry calculation method, should be modified so that accurate root mean square of plateau height distribution could be obtained. Second, the set of geometric parameters used in generating liner finish (ISO 13565-2) is different from the set of parameters used in manufacturing industry (ISO 13565-3). Quantitative relations between these two sets should be studied.
Journal Article

Effects of Ethanol Content on Gasohol PFI Engine Wide-Open-Throttle Operation

The NOx emission and knock characteristics of a PFI engine operating on ethanol/gasoline mixtures were assessed at 1500 and 2000 rpm with λ =1 under Wide-Open-Throttle condition. There was no significant charge cooling due to fuel evaporation. The decrease in NOx emission and exhaust temperature could be explained by the change in adiabatic flame temperature of the mixture. The fuel knock resistance improved significantly with the gasohol so that ignition could be timed at a value much closer or at MBT timing. Changing from 0% to 100% ethanol in the fuel, this combustion phasing improvement led to a 20% increase in NIMEP and 8 percentage points in fuel conversion efficiency at 1500 rpm. At 2000 rpm, where knocking was less severe, the improvement was about half (10% increase in NIMEP and 4 percentage points in fuel conversion efficiency).
Technical Paper

Assessment of Thin Thermal Barrier Coatings for I.C. Engines

This paper investigates theoretically the effects of heat transfer characteristics, such as crank-angle phasing and wall temperature swings, on the thermodynamic efficiency of an IC engine. The objective is to illustrate the fundamental physical basis of applying thin thermal barrier coatings to improve the performance of military and commercial IC engines. A simple model illustrates how the thermal impedance and thickness of coatings can be manipulated to control heat transfer and limit the high temperatures in engine components. A friction model is also included to estimate the overall improvement in engine efficiency by the proper selection of coating thickness and material.