Refine Your Search


Search Results

Viewing 1 to 11 of 11
Technical Paper

Effect of Composition, Particle Size, and Heat Treatment on the Mechanical Properties of Al-4.5 wt.% Cu Based Alumina Particulate Reinforced Composites

The quest for higher efficiency and performance of automotive vehicles requires application of materials with high strength, stiffness and lower weight in their construction. Particulate-reinforced aluminum-matrix composites are cost-competitive materials, which can meet these requirements. MMCC, Inc. has been optimizing particulate-reinforced alloy systems and developing the Advanced Pressure Infiltration Casting (APIC™) process for the manufacture of components from these materials. This paper discusses the results of a recent study in which composites reinforced with 55 vol.% alumina were cast using two sizes of alumina particulate and eight different matrix alloys based on Al-4.5 wt.% Cu with varying amounts of silicon and magnesium. Optimum heat treatments for each alloy were determined utilizing microhardness studies. The tensile strength and fracture toughness were evaluated as a function of alloy chemistry, particulate size, and heat treatment.
Technical Paper

Draw Bead Penetration as a Control Element of Material Flow

Draw beads are widely utilized as a mechanism for providing proper restraining force to a sheet in a forming operation. In this paper, numerical simulations using the nonlinear finite element method are conducted to model the process of drawing a sheet through various draw bead configurations to study the mechanics of draw bead restraint. By examing the sensitivity of the draw bead restraining force due to the change of the draw bead penetration, the work shows that the penetration has the potential to be a very good element for varying and controlling restraining force during the process. A closed-loop feedback control of draw bead penetration using a proportional-integral controller is achieved by the combination of the original finite element simulation and a special element which links penetration to a pre-defined restraining force trajectory.
Technical Paper

Optimal Forming of Aluminum 2008-T4 Conical Cups Using Force Trajectory Control

In this paper we investigate the optimal forming of conical cups of AL 2008-T4 through the use of real-time process control. We consider a flat, frictional binder the force of which can be determined precisely through closed-loop control. Initially the force is held constant throughout the forming of the cup, and various levels of force are tested experimentally and with numerical simulation. Excellent agreement between experiment and simulation is observed. The effects of binder force on cup shape, thickness distribution, failure mode and cup failure height are investigated, and an “optimal” constant binder force is determined. For this optimal case, the corresponding punch force is recorded as a function of punch displacement and is used in subsequent closed-loop control experiments. In addition to the constant force test, a trial variable binder force test was performed to extend the failure height beyond that obtained using the “optimal” constant force level.
Technical Paper

The Anatomy of Knock

The combustion process after auto-ignition is investigated. Depending on the non-uniformity of the end gas, auto-ignition could initiate a flame, produce pressure waves that excite the engine structure (acoustic knock), or result in detonation (normal or developing). For the “acoustic knock” mode, a knock intensity (KI) is defined as the pressure oscillation amplitude. The KI values over different cycles under a fixed operating condition are observed to have a log-normal distribution. When the operating condition is changed (over different values of λ, EGR, and spark timing), the mean (μ) of log (KI/GIMEP) decreases linearly with the correlation-based ignition delay calculated using the knock-point end gas condition of the mean cycle. The standard deviation σ of log(KI/GIMEP) is approximately a constant, at 0.63. The values of μ and σ thus allow a statistical description of knock from the deterministic calculation of the ignition delay using the mean cycle properties
Technical Paper

Additional Findings on the Multi-Modal Demands of “Voice-Command” Interfaces

This paper presents the results of a study of how people interacted with a production voice-command based interface while driving on public roadways. Tasks included phone contact calling, full address destination entry, and point-of-interest (POI) selection. Baseline driving and driving while engaging in multiple-levels of an auditory-vocal cognitive reference task and manual radio tuning were used as comparison points. Measures included self-reported workload, task performance, physiological arousal, glance behavior, and vehicle control for an analysis sample of 48 participants (gender balanced across ages 21-68). Task analysis and glance measures confirm earlier findings that voice-command interfaces do not always allow the driver to keep their hands on the wheel and eyes on the road, as some assume.
Technical Paper

Comparative Analysis of Automotive Powertrain Choices for the Next 25 Years

This paper assesses the potential improvement of automotive powertrain technologies 25 years into the future. The powertrain types assessed include naturally-aspirated gasoline engines, turbocharged gasoline engines, diesel engines, gasoline-electric hybrids, and various advanced transmissions. Advancements in aerodynamics, vehicle weight reduction and tire rolling friction are also taken into account. The objective of the comparison is the potential of anticipated improvements in these powertrain technologies for reducing petroleum consumption and greenhouse gas emissions at the same level of performance as current vehicles in the U.S.A. The fuel consumption and performance of future vehicles was estimated using a combination of scaling laws and detailed vehicle simulations. The results indicate that there is significant potential for reduction of fuel consumption for all the powertrains examined.
Technical Paper

Axiomatic Design of Automobile Suspension and Steering Systems: Proposal for a Novel Six-Bar Suspension

The existing vehicle designs exhibit a high level of coupling. For instance the coupling in the suspension and steering systems manifests itself through the change in wheel alignment parameters (WAP) due to suspension travel. This change in the WAP causes directional instability and tire-wear. The approach of the industry to solve this problem has been twofold. The first approach has been optimization of suspension link lengths to reduce the change in WAP to zero. Since this is not possible with the existing architecture, the solution used is the optimization of the spring stiffness K to get a compromise solution for comfort (which requires significant suspension travel and hence a soft spring) and directional stability (which demands least possible change in wheel alignment parameters and hence a stiff spring).
Journal Article

On-Board Particulate Filter Failure Prevention and Failure Diagnostics Using Radio Frequency Sensing

The increasing use of diesel and gasoline particulate filters requires advanced on-board diagnostics (OBD) to prevent and detect filter failures and malfunctions. Early detection of upstream (engine-out) malfunctions is paramount to preventing irreversible damage to downstream aftertreatment system components. Such early detection can mitigate the failure of the particulate filter resulting in the escape of emissions exceeding permissible limits and extend the component life. However, despite best efforts at early detection and filter failure prevention, the OBD system must also be able to detect filter failures when they occur. In this study, radio frequency (RF) sensors were used to directly monitor the particulate filter state of health for both gasoline particulate filter (GPF) and diesel particulate filter (DPF) applications.
Technical Paper

Continuous Particulate Filter State of Health Monitoring Using Radio Frequency Sensing

Reliable means for on-board detection of particulate filter failures or malfunctions are needed to meet diagnostics (OBD) requirements. Detecting these failures, which result in tailpipe particulate matter (PM) emissions exceeding the OBD limit, over all operating conditions is challenging. Current approaches employ differential pressure sensors and downstream PM sensors, in combination with particulate filter and engine-out soot models. These conventional monitors typically operate over narrowly-defined time windows and do not provide a direct measure of the filter’s state of health. In contrast, radio frequency (RF) sensors, which transmit a wireless signal through the filter substrate provide a direct means for interrogating the condition of the filter itself.
Journal Article

Conceptual Modeling of Complex Systems via Object Process Methodology

Knowledge mapping is a first and mandatory step in creation of system architecture. This paper considers the conceptual modeling of automotive systems, and discusses the creation of a knowledge-based model with respect to the Object Process Methodology an approach used in designing intelligent systems by depicting them using object models and process models. With this knowledge, systems engineer should consider what a product is comprised of (its structure), how it operates (its dynamics), and how it interacts with the environment. As systems have become more complex, a prevalent problem in systems development has been the number of accruing errors. A clearly defined and consistent mapping of knowledge regarding structure, operation and interaction is necessary to construct an effective and useful system. An interactive, iterative and consistent method is needed to cope with this complex and circular problem.