Refine Your Search

Topic

Author

Search Results

Journal Article

Ash Effects on Diesel Particulate Filter Pressure Drop Sensitivity to Soot and Implications for Regeneration Frequency and DPF Control

2010-04-12
2010-01-0811
Ash, primarily derived from diesel engine lubricants, accumulates in diesel particulate filters directly affecting the filter's pressure drop sensitivity to soot accumulation, thus impacting regeneration frequency and fuel economy. After approximately 33,000 miles of equivalent on-road aging, ash comprises more than half of the material accumulated in a typical cordierite filter. Ash accumulation reduces the effective filtration area, resulting in higher local soot loads toward the front of the filter. At a typical ash cleaning interval of 150,000 miles, ash more than doubles the filter's pressure drop sensitivity to soot, in addition to raising the pressure drop level itself. In order to evaluate the effects of lubricant-derived ash on DPF pressure drop performance, a novel accelerated ash loading system was employed to generate the ash and load the DPFs under carefully-controlled exhaust conditions.
Journal Article

The Effects of Charge Motion and Laminar Flame Speed on Late Robust Combustion in a Spark-Ignition Engine

2010-04-12
2010-01-0350
The effects of charge motion and laminar flame speeds on combustion and exhaust temperature have been studied by using an air jet in the intake flow to produce an adjustable swirl or tumble motion, and by replacing the nitrogen in the intake air by argon or CO₂, thereby increasing or decreasing the laminar flame speed. The objective is to examine the "Late Robust Combustion" concept: whether there are opportunities for producing a high exhaust temperature using retarded combustion to facilitate catalyst warm-up, while at the same time, keeping an acceptable cycle-to-cycle torque variation as measured by the coefficient of variation (COV) of the net indicated mean effective pressure (NIMEP). The operating condition of interest is at the fast idle period of a cold start with engine speed at 1400 RPM and NIMEP at 2.6 bar. A fast burn could be produced by appropriate charge motion. The combustion phasing is primarily a function of the spark timing.
Journal Article

Lubricant-Derived Ash Impact on Gasoline Particulate Filter Performance

2016-04-05
2016-01-0942
The increasing use of gasoline direct injection (GDI) engines coupled with the implementation of new particulate matter (PM) and particle number (PN) emissions regulations requires new emissions control strategies. Gasoline particulate filters (GPFs) present one approach to reduce particle emissions. Although primarily composed of combustible material which may be removed through oxidation, particle also contains incombustible components or ash. Over the service life of the filter the accumulation of ash causes an increase in exhaust backpressure, and limits the useful life of the GPF. This study utilized an accelerated aging system to generate elevated ash levels by injecting lubricant oil with the gasoline fuel into a burner system. GPFs were aged to a series of levels representing filter life up to 150,000 miles (240,000 km). The impact of ash on the filter pressure drop and on its sensitivity to soot accumulation was investigated at specific ash levels.
Journal Article

Development and Application of Ring-Pack Model Integrating Global and Local Processes. Part 1: Gas Pressure and Dynamic Behavior of Piston Ring Pack

2017-03-28
2017-01-1043
A new ring pack model has been developed based on the curved beam finite element method. This paper describes the first part of this model: simulating gas pressure in different regions above piston skirt and ring dynamic behavior of two compression rings and a twin-land oil control ring. The model allows separate grid divisions to resolve ring structure dynamics, local force/pressure generation, and gas pressure distribution. Doing so enables the model to capture both global and local processes at their proper length scales. The effects of bore distortion, piston secondary motion, and groove distortion are considered. Gas flows, gas pressure distribution in the ring pack, and ring structural dynamics are coupled with ring-groove and ring-liner interactions, and an implicit scheme is employed to ensure numerical stability. The model is applied to a passenger car engine to demonstrate its ability to predict global and local effects on ring dynamics and oil transport.
Journal Article

EGR Effects on Boosted SI Engine Operation and Knock Integral Correlation

2012-04-16
2012-01-0707
The effects of cooled exhaust gas recirculation (EGR) on a boosted direct-injection (DI) spark ignition (SI) engine operating at stoichiometric equivalence ratio, gross indicated mean effective pressure of 14-18 bar, and speed of 1500-2500 rpm, are studied under constant fuel condition at each operating point. In the presence of EGR, burn durations are longer and combustion is more retard. At the same combustion phasing, the indicated specific fuel consumption improves because of a decrease in heat loss and an increase in the specific heat ratio. The knock limited spark advance increases substantially with EGR. This increase is due partly to a slower combustion which is equivalent to a spark retard, as manifested by a retarded value of the 50% burn point (CA50), and due partly to a slower ignition chemistry of the diluted charge, as manifested by the knock limited spark advance to beyond the value offered by the retarded CA50.
Journal Article

Effect of Operation Strategy on First Cycle CO, HC, and PM/PN Emissions in a GDI Engine

2015-04-14
2015-01-0887
The impact of the operating strategy on emissions from the first combustion cycle during cranking was studied quantitatively in a production gasoline direct injection engine. A single injection early in the compression cycle after IVC gives the best tradeoff between HC, particulate mass (PM) and number (PN) emissions and net indicated effective pressure (NIMEP). Retarding the spark timing, it does not materially affect the HC emissions, but lowers the PM/PN emissions substantially. Increasing the injection pressure (at constant fuel mass) increases the NIMEP but also the PM/PN emissions.
Journal Article

The Underlying Physics and Chemistry behind Fuel Sensitivity

2010-04-12
2010-01-0617
Recent studies have shown that for a given RON, fuels with a higher sensitivity (RON-MON) tend to have better antiknock performance at most knock-limited conditions in modern engines. The underlying chemistry behind fuel sensitivity was therefore investigated to understand why this trend occurs. Chemical kinetic models were used to study fuels of varying sensitivities; in particular their autoignition delay times and chemical intermediates were compared. As is well known, non-sensitive fuels tend to be paraffins, while the higher sensitivity fuels tend to be olefins, aromatics, diolefins, napthenes, and alcohols. A more exact relationship between sensitivity and the fuel's chemical structure was not found to be apparent. High sensitivity fuels can have vastly different chemical structures. The results showed that the autoignition delay time (τ) behaved differently at different temperatures. At temperatures below 775 K and above 900 K, τ has a strong temperature dependence.
Technical Paper

The Mars Gravity Biosatellite: Thermal Design Strategies for a Rotating Partial Gravity Spacecraft

2007-07-09
2007-01-3078
A rotating spacecraft which encloses an atmospheric pressure vessel poses unique challenges for thermal control. In any given location, the artificial gravity vector is directed from the center to the periphery of the vehicle. Its local magnitude is determined by the mathematics of centripetal acceleration and is directly proportional to the radius at which the measurement is taken. Accordingly, we have a system with cylindrical symmetry, featuring microgravity at its core and increasingly strong gravity toward the periphery. The tendency for heat to move by convection toward the center of the craft is one consequence which must be addressed. In addition, fluid flow and thermal transfer is markedly different in this unique environment. Our strategy for thermal control represents a novel approach to address these constraints. We present data to theoretically and experimentally justify design decisions behind the Mars Gravity Biosatellite's proposed payload thermal control subassembly.
Technical Paper

Rapid Compression Machine Measurements of Ignition Delays for Primary Reference Fuels

1990-02-01
900027
A rapid compression machine for chemical kinetic studies has been developed. The design objectives of the machine were to obtain: 1)uniform well-defined core gas; 2) laminar flow condition; 3) maximum ratio of cooling to compression time; 4) side wall vortex containment; and, 5) minimum mechanical vibration. A piston crevice volume was incorporated to achieve the side wall vortex containment. Tests with inert gases showed the post-compression pressure matched with the calculated laminar pressure indicating that the machine achieved these design objectives. Measurements of ignition delays for homogeneous PRF/O2/N2/Ar mixture in the rapid compression machine have been made with five primary reference fuels (ON 100, 90, 75, 50, and 0) at an equivalence ratio of 1, a diluent (s)/oxygen ratio of 3.77, and two initial pressures of 500 Torr and 1000 Torr. Post-compression temperatures were varied by blending Ar and N2 in different ratios.
Technical Paper

Phenomena that Determine Knock Onset in Spark-Ignition Engines

2007-01-23
2007-01-0007
Experiments were carried out to collect in-cylinder pressure data and microphone signals from a single-cylinder test engine using spark timingsbefore, at, and after knock onset for toluene reference fuels. The objective was to gain insight into the phenomena that determine knock onset, detected by an external microphone. In particular, the study examines how the end-gas autoignition process changes as the engine's spark timing is advanced through the borderline knock limit into the engine's knocking regime. Fast Fourier transforms (FFT) and bandpass filtering techniques were used to process the recorded cylinder pressure data to determine knock intensities for each cycle. Two characteristic pressure oscillation frequencies were detected: a peak just above 6 kHz and a range of peaks in the 15-22 kHz range. The microphone data shows that the audible knock signal has the same 6 kHz peak.
Technical Paper

Anthropometric and Blood Flow Characteristics Leading to EVA Hand Injury

2009-07-12
2009-01-2471
The aim of this study was to explore if fingernail delamination injury following EMU glove use may be caused by compression-induced blood flow occlusion in the finger. During compression tests, finger blood flow decreased more than 60%, however this occurred more rapidly for finger pad compression (4 N) than for fingertips (10 N). A pressure bulb compression test resulted in 50% and 45% decreased blood flow at 100 mmHg and 200 mmHg, respectively. These results indicate that the finger pad pressure required to articulate stiff gloves is more likely to contribute to injury than the fingertip pressure associated with tight fitting gloves.
Technical Paper

On the Maximum Pressure Rise Rate in Boosted HCCI Operation

2009-11-02
2009-01-2727
This paper explores the combined effects of boosting, intake air temperature, trapped residual gas fraction, and dilution on the Maximum Pressure Rise Rate (MPRR) in a boosted single cylinder gasoline HCCI engine with combustion controlled by negative valve overlap. Dilutions by both air and by cooled EGR were used. Because of the sensitivity of MPRR to boost, the MPRR constrained maximum load (as measured by the NIMEP) did not necessarily increase with boosting. At the same intake temperature and trapped residual gas fraction, dilution by recirculated burn gas was effective in reducing the MPRR, but dilution by air increased the value of MPRR. The dependence of MPRR on the operating condition was interpreted successfully by a simple thermodynamic analysis that related the MPRR value to the volumetric heat release rate.
Technical Paper

Characterization of Structural, Volume and Pressure Components to Space Suit Joint Rigidity

2009-07-12
2009-01-2535
Gas-pressurized space suits are highly resistive to astronaut movement, and this resistance has been previously explained by volume and/or structural effects. This study proposed that an additional effect, pressure effects due to compressing/expanding the internal gas during joint articulation, also inhibits mobility. EMU elbow torque components were quantified through hypobaric testing. Structural effects dominated at low joint angles, and volume effects were found to be the primary torque component at higher angles. Pressure effects were found to be significant only at high joint angles (increased flexion), contributing up to 8.8% of the total torque. These effects are predicted to increase for larger, multi-axis joints. An active regulator system was developed to mitigate pressure effects, and was found to be capable of mitigating repeated pressure spikes caused by volume changes.
Technical Paper

Prediction of the Knock Limit and Viable Operating Range for a Homogeneous-Charge Compression-Ignition (HCCI) Engine

2003-03-03
2003-01-1092
A method is presented for predicting the viable operating range of homogeneous-charge compression-ignition (HCCI) engines. A fundamental criterion for predicting HCCI knock is described and used to predict the minimum air/fuel ratio (and hence maximum torque) available from the engine. The lean (misfire) limit is computed using a modification of the multi-zone method of Aceves et al. [1]. Numerical improvements are described which allow even very complex fuel chemistry to be rapidly modeled on a standard PC. The viable operating range for an HCCI engine burning a primary reference fuel (PRF 95) is predicted and compared with literature experimental data. The new ability to accurately predict the operating range for any given HCCI engine/fuel combination should considerably simplify the tasks of designing a robust engine and identifying suitable fuels for HCCI.
Technical Paper

The Anatomy of Knock

2016-04-05
2016-01-0704
The combustion process after auto-ignition is investigated. Depending on the non-uniformity of the end gas, auto-ignition could initiate a flame, produce pressure waves that excite the engine structure (acoustic knock), or result in detonation (normal or developing). For the “acoustic knock” mode, a knock intensity (KI) is defined as the pressure oscillation amplitude. The KI values over different cycles under a fixed operating condition are observed to have a log-normal distribution. When the operating condition is changed (over different values of λ, EGR, and spark timing), the mean (μ) of log (KI/GIMEP) decreases linearly with the correlation-based ignition delay calculated using the knock-point end gas condition of the mean cycle. The standard deviation σ of log(KI/GIMEP) is approximately a constant, at 0.63. The values of μ and σ thus allow a statistical description of knock from the deterministic calculation of the ignition delay using the mean cycle properties
Technical Paper

Real World Performance of an Onboard Gasoline/Ethanol Separation System to Enable Knock Suppression Using an Octane-On-Demand Fuel System

2018-04-03
2018-01-0879
Higher compression ratio and turbocharging, with engine downsizing can enable significant gains in fuel economy but require engine operating conditions that cause engine knock under high load. Engine knock can be avoided by supplying higher-octane fuel under such high load conditions. This study builds on previous MIT papers investigating Octane-On-Demand (OOD) to enable a higher efficiency, higher-boost higher compression-ratio engine. The high-octane fuel for OOD can be obtained through On-Board-Separation (OBS) of alcohol blended gasoline. Fuel from the primary fuel tank filled with commercially available gasoline that contains 10% by volume ethanol (E10) is separated by an organic membrane pervaporation process that produces a 30 to 90% ethanol fuel blend for use when high octane is needed. In addition to previous work, this paper combines modeling of the OBS system with passenger car and medium-duty truck fuel consumption and octane requirements for various driving cycles.
Technical Paper

Performance Assessment of Extended Stroke Spark Ignition Engine

2018-04-03
2018-01-0893
The performance of an extended stroke spark ignition engine has been assessed by cycle simulation. The base engine is a modern turbo-charged 4-stroke passenger car spark-ignition engine with 10:1 compression ratio. A complex crank mechanism is used so that the intake stroke remains the same while the expansion-to-intake stroke ratio (SR) is varied by changing the crank geometry. The study is limited to the thermodynamic aspect of the extended stroke; the changes in friction, combustion characteristic, and other factors are not included. When the combustion is not knock limited, an efficiency gain of more than 10 percent is obtained for SR = 1.5. At low load, however, there is an efficiency lost due to over-expansion. At the same NIMEP, the extended stroke renders the engine more resistant to knock. At SR of 1.8, the engine is free from knock up to 14 bar NIMEP at 2000 rpm. Under knocking condition, the required spark retard to prevent knocking is less with the extended stroke.
Technical Paper

Influence of Material Properties and Pore Design Parameters on Non-Catalyzed Diesel Particulate Filter Performance with Ash Accumulation

2012-09-10
2012-01-1728
Diesel particulate filters (DPF) are a common component in emission-control systems of modern clean diesel vehicles. Several DPF materials have been used in various applications. Silicone Carbide (SiC) is common for passenger vehicles because of its thermal robustness derived from its high specific gravity and heat conductivity. However, a segmented structure is required to relieve thermal stress due to SiC's higher coefficient of thermal expansion (CTE). Cordierite (Cd) is a popular material for heavy-duty vehicles. Cordierite which has less mass per given volume, exhibits superior light-off performance, and is also adequate for use in larger monolith structures, due to its lower CTE. SiC and cordierite are recognized as the most prevalent DPF materials since the 2000's. The DPF traps not only combustible particles (soot) but also incombustible ash. Ash accumulates in the DPF and remains in the filter until being physically removed.
Technical Paper

A Numerical and Experimental Study of Twin-land Oil Control Ring Friction in Internal Combustion Engines Part 2

2012-04-16
2012-01-1321
A twin-land oil control ring (TLOCR) model is used to evaluate TLOCR friction and the results are compared to the experiment measurement in a single cylinder floating liner engine under motoring condition. The model is based on a correlation between the hydrodynamic pressure and film thickness, which is generated using a deterministic model. The well-known three-regime lubrication is predicted with the model for ring with different ring tensions under various engine running conditions. A good match is found for the model and experiment results.
Technical Paper

Dual-Fuel Gasoline-Alcohol Engines for Heavy Duty Trucks: Lower Emissions, Flexible-Fuel Alternative to Diesel Engines

2018-04-03
2018-01-0888
Long-haul and other heavy-duty trucks, presently almost entirely powered by diesel fuel, face challenges meeting worldwide needs for greatly reducing nitrogen oxide (NOx) emissions. Dual-fuel gasoline-alcohol engines could potentially provide a means to cost-effectively meet this need at large scale in the relatively near term. They could also provide reductions in greenhouse gas emissions. These spark ignition (SI) flexible fuel engines can provide operation over a wide fuel range from mainly gasoline use to 100% alcohol use. The alcohol can be ethanol or methanol. Use of stoichiometric operation and a three-way catalytic converter can reduce NOx by around 90% relative to emissions from diesel engines with state of the art exhaust treatment.
X