Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Evaluation of SoftMountSM Technology for Use in Packaging UltraThinwall Ceramic Substrates

2002-03-04
2002-01-1097
Quantitative in-use pressure measurements were taken from packaging ceramic substrates with the SoftMountSM technology and two more traditional technologies, stuffing and tourniquet. Each technology was assessed using four separate mat materials. Mat selection enhanced the application of the SoftMountSM technology through the reduced pressures applied to the substrate during packaging. High temperature and low temperature thermal cycling studies were performed on the canned converters for the three packaging technologies so that an evaluation could be made of converter durability. The SoftMountSM packaging technology yielded the lowest pressures of all the processes studied, regardless of mat type. The laminar hybrid mat evaluated yielded the best combination of pressure and durability performance. Low temperature residual shear strengths following thermal cycling of the converters showed good correlation between the SoftMountSM technology and the stuffing method.
Technical Paper

The Effect of Environmental Aging on Intumescent Mat Material Durability at Low Temperatures

2002-03-04
2002-01-1099
Mat material durability data in the form of fragility curves were generated in a critical temperature region for three intumescent mat materials considered for low temperature converter applications. The mat materials were tested in a tourniquet wrap converter configuration employing a cylindrical ceramic substrate. Prior to developing durability data for these mat materials, the test items were subjected to various environmental thermal and/or vibration aging conditions. Mat material fragility data were generated in terms of the dynamic force required to impose prescribed differential motion between the can and substrate, thereby, subjecting the mat material to a dynamic shearing like that expected during resonant excitation. As expected, it was found that the mat material capacity to resist shearing deformation decreased when the test samples were subjected to 36 hours of low temperature thermal cyclic aging.
Technical Paper

Size Effect on the Strength of Ceramic Catalyst Supports

1992-10-01
922333
The typical ceramic catalyst support for automotive application has a total volume of 1640 cm3. Approximately 10% of this volume is subjected to tensile thermal stresses due to a radial temperature gradient in service [1]*. These stresses are kept below 50% of the substrate strength to minimize fatigue degradation and to ensure long-term durability [2]. However, the tensile strength measurements are carried out in 4-point bending using 2.5 cm wide x 1.2 cm thick x 10 cm long modulus of rupture bars in which the specimen volume subjected to tensile stress is merely 3.2 cm3 or 0.2% of the total substrate volume [3]. Thus, a large specimen population is often necessary (50 specimens or more) to obtain the strength distribution representative of full substrate. This is particularly true for large frontal area substrates for diesel catalyst supports with an order of magnitude larger stressed volume. In this paper, the modulus of rupture data are obtained as function of specimen size.
Technical Paper

Measurement of Biaxial Compressive Strength of Cordierite Ceramic Honeycombs

1993-03-01
930165
The stringent durability requirements approaching 100,000 vehicle miles for automotive substrates and 290,000 vehicle miles for large frontal area diesel substrates for 1994+ model year vehicles call for advanced packaging designs with thick ceramic mats and high mount densities. The latter result in high mounting pressure on the substrate and enhance its mechanical integrity against engine vibrations, road shocks and back pressure forces. A novel measurement technique which applies a uniform biaxial compressive load on the lateral surface of ceramic substrates, thereby simulating canning loads, is described. The biaxial compressive strength data obtained in this manner help determine the maximum mounting pressure and mat density for a durable packaging design. The biaxial compressive strength data for both round and non round substrates with small and large frontal area are presented.
Technical Paper

Design Considerations for a Ceramic Preconverter System

1994-03-01
940744
The preconverter is an essential element of exhaust gas treatment to help meet the tighter emission standards of TLEV and LEV levels. Its design must be chosen so as to meet the simultaneous requirements of compactness, faster light-off, low back pressure, high temperature durability and low cost. This paper presents design options for a ceramic substrate and durable package which lead to an optimum and cost-effective preconverter system. Preliminary data for high temperature physical durability of selected converter systems are presented. Performance parameters for light-off activity and back pressure are also computed and compared with those of standard substrates used in underbody application. Laboratory tests comprising of axial push-out test, high temperature vibration test, exhaust gas simulation test and the engine dynamometer test demonstrate the viability of ceramic preconverters for automotive application.
Technical Paper

Systems Design for Ceramic LFA Substrates for Diesel/Natural Gas Flow- Through Catalysts

1995-02-01
950150
The monolithic, large frontal area (LFA), extruded ceramic substrates for diesel flow-through catalysts offer unique advantages of design versatility, longterm durability, ease of packaging and low Cost [1, 2]*. This paper examines the effect of cell density and cell size on catalyst light-off performance, back pressure, mechanical and thermal durability, and the steady-state catalytic activity. The factors which affect these performance characteristics are discussed. Certain trade-offs in performance parameters, which are necessary for optimum systems design, are also discussed. Following a brief discussion of design methodology, substrate selection, substrate/washcoat interaction and packaging specifications, the durability data for ceramic flow-through catalysts are summarized. A total of over 18 million vehicle miles have been successfully demonstrated by ceramic LFA catalysts using the systems design approach.
Technical Paper

Durability of Extruded Electrically Heated Catalysts

1995-02-01
950404
Extruded metal honeycombs are used as electrically heated catalysts (EHCs). The durability requirements of this application make demands on high surface area, thin cross-section metal honeycombs. Significant durability improvements over previous extruded metal honeycomb EHCs have been achieved by material and package design changes. The product redesign was supported by finite element models and extensive testing. The redesigned EHC has passed severe laboratory and field testing. The tests include electrical cycling to 1000°C/1600 cycles, hot vibration to 60g/900°C and demanding on-vehicle exposure. Excellent durability of the extruded metal honeycomb has been demonstrated.
Technical Paper

High Temperature Compressive Strength of Extruded Cordierite Ceramic Substrates

1995-02-01
950787
High temperature modulus of rupture (MOR) data, published previously, show that the ceramic catalyst supports get stronger with temperature due to the absence of water vapor and closure of microcracks which would otherwise act as stress concentrators [1, 2 and 3]*. The increased MOR value is partially responsible for the excellent durability of ceramic catalyst supports at high temperature. In this paper, we will present the compressive strength data of ceramic substrates at high temperature, namely the crush strength along B-axis and biaxial compressive strength of the whole substrate. Since the honeycomb strength is directly related to that of the individual cell wall, the compressive strength should also increase with temperature similar to the modulus of rupture. Accordingly, the ceramic substrates are capable of supporting higher mounting pressures exerted by the intumescent mat at high temperature [4].
Technical Paper

Structural Changes in the World Auto Companies: The Emerging Japanese Role

1982-02-01
820444
Japan’s recent dominance of the international auto industry does not result from some major single factor, such as technological superiority or advanced automation. It derives from twenty years of building flexible, durable industrial systems integrating assemblers, suppliers, and related companies. Current competitive advantages result from combinations of seemingly unrelated company, government, and labor practices. Japan’s position of leadership will instigate major changes in international labor forces, corporate strategies, and government policies, as former auto powers adapt to new competition, and simultaneous shifts in energy and economics.
Technical Paper

Catalytic Converter Mat Material Durability Measurement Under Controlled Thermal and Vibration Environments

2000-03-06
2000-01-0221
To aid in the catalytic converter design and development process, a test apparatus was designed and built which will allow comparative evaluation of the durability of candidate mat materials under highly controlled thermal and vibration environments. The apparatus directly controls relative shear deflection between the substrate and can to impose known levels of mat material strain while recording the transmitted shear force across the mat material. Substrate and can temperatures are controlled at constant levels using a resistive thermal exposure (RTE) technique. Mat material fatigue after several million cycles is evident by a substantial decrease in the transmitted force. A fragility test was found to be an excellent method to quickly compare candidate materials to be used for a specific application. Examples of test results from several materials are given to show the utility of the mat material evaluation technique.
X