Refine Your Search

Topic

Author

Search Results

Journal Article

AHSS Shear Fracture Predictions Based on a Recently Developed Fracture Criterion

2010-04-12
2010-01-0988
One of the issues in stamping of advanced high strength steels (AHSS) is the stretch bending fracture on a sharp radius (commonly referred to as shear fracture). Shear fracture typically occurs at a strain level below the conventional forming limit curve (FLC). Therefore it is difficult to predict in computer simulations using the FLC as the failure criterion. A modified Mohr-Coulomb (M-C) fracture criterion has been developed to predict shear fracture. The model parameters for several AHSS have been calibrated using various tests including the butter-fly shaped shear test. In this paper, validation simulations are conducted using the modified (M-C) fracture criterion for a dual phase (DP) 780 steel to predict fracture in the stretch forming simulator (SFS) test and the bending under tension (BUT) test. Various deformation fracture modes are analyzed, and the range of usability of the criterion is identified.
Journal Article

Hydrogen Embrittlement of Commercially Produced Advanced High Strength Sheet Steels

2010-04-12
2010-01-0447
The susceptibility of Advanced High Strength Steels (AHSS) to hydrogen embrittlement (HE) was evaluated on selected high strength sheet steels (DP 600, TRIP 780, TRIP 980, TWIP-Al, TWIP, and Martensitic M220) and the results were compared to data on a lower strength (300 MPa tensile strength) low carbon steel. Tensile samples were cathodically charged and then immediately tensile tested to failure to analyze the mechanical properties of the as-charged steel. The effects of hydrogen on deformation and fracture behavior were evaluated through analysis of tensile properties, necking geometry, and SEM images of fracture surfaces and metallographic samples of deformed tensile specimens. The two fully austenitic TWIP steels were resistant to hydrogen effects in the laboratory charged tensile samples.
Journal Article

Effects of Chemical Composition, Heat Treatment, and Microstructure in Splittable Forged Steel Connecting Rods

2015-04-14
2015-01-0522
Fracture split forged steel connecting rods are utilized in many new high performance automotive engines to increase durability. Higher strength levels are needed as the power density increases. Fracture splitting without plastic deformation is necessary for manufacturability. Metallurgical design is a key for achieving the required performance levels. Several medium carbon steels containing 0.07 wt pct P, 0.06 wt pct S and various amounts of Mn, Si, V, and N were produced by vacuum induction melting laboratory heats and hot working the cast ingots into plates. The plates were cooled at varying rates to simulate typical cooling methods after forging. Microstructures were generally ferrite and pearlite as evaluated by light optical and scanning electron microscopy. Mechanical properties were determined by standard tensile tests, high strain rate notched tensile tests, and Charpy V-notch impact tests to assess “splittability”.
Journal Article

Carbon and Manganese Effects on Quenching and Partitioning Response of CMnSi-Steels

2015-04-14
2015-01-0530
Quenching and partitioning (Q&P) is a novel heat treatment to produce third generation advanced high-strength steels (AHSS). The influence of carbon on mechanical properties of Q&P treated CMnSi-steels was studied using 0.3C-1.5Mn-1.5Si and 0.4C-1.5Mn-1.5Si alloys. Full austenitization followed by two-step Q&P treatments were conducted using varying partitioning times and a fixed partitioning temperature of 400 °C. The results were compared to literature data for 0.2C-1.6Mn-1.6Si, 0.2-3Mn-1.6Si and 0.3-3Mn-1.6Si Q&P treated steels. The comparison showed that increasing the carbon content from 0.2 to 0.4 wt pct increased the ultimate tensile strength by 140 MPa per 0.1 wt pct C up to 1611 MPa without significantly decreasing ductility for the partitioning conditions used. Increased alloy carbon content did not substantially increase the retained austenite fractions. The best combinations of ultimate tensile strength and total elongation were obtained using short partitioning times.
Journal Article

Characterization of Advanced High Strength Steel Sheets in View of the Numerical Prediction of Sidewall Curl

2013-01-21
2012-01-2326
In this study, a procedure for characterizing advanced high strength steel sheets is presented in view of determining the material parameters for constitutive models that can be used for accurate prediction of springback and sidewall curl. The mechanical properties of DP980 and TRIP780 sheets were obtained experimentally, and their cyclic tension-compression behaviour was modeled with the Chaboche nonlinear kinematic hardening model and the Yoshida-Uemori two-surface plasticity model that are implemented in LS-DYNA. The unloading moduli were determined from monotonic tension tests at various prestrain levels. An inverse approach based on linear and quadratic response surfaces created by Sequential Strategy with Domain Reduction (SRSM) methodology using LS-OPT software was used and investigated to identify specific material parameters in each constitutive model.
Technical Paper

Influence of Coating Microstructure on the Fatigue Properties of Zinc Coated Sheet Steels

1998-02-23
980955
The influence of coatings on fatigue behavior has been examined for the following commercially produced sheet steels: uncoated titanium stabilized interstitial-free (IF); electrogalvanized titanium stabilized IF; hot-dip galvanized aluminum killed, drawing quality (AKDQ); and galvannealed AKDQ. Fully reversed bending fatigue tests were conducted at ambient temperature on Krouse-type flexural fatigue machines. A dependence of crack development was observed and correlated to the microstructure and properties of the different coatings. Furthermore, a functional design relationship for each material was determined through stress-life analysis. The experimentally determined fatigue properties were compared to conventional estimates based on tensile properties which ignore coating effects. The results of this work suggest that ductile coatings may enhance fatigue resistance, while brittle coatings may reduce fatigue life.
Technical Paper

The Fatigue Performance of High Temperature Vacuum Carburized Nb Modified 8620 Steel

2007-04-16
2007-01-1007
The bending fatigue performance of high temperature (1050 °C) vacuum carburized Nb modified 8620 steel, with niobium additions of 0.02, 0.06 and 0.1 wt pct, was evaluated utilizing a modified Brugger specimen geometry. Samples were heated at two different rates (20 and 114 °C min-1) to the carburizing temperature resulting in different prior austenite grain structures that depended on the specific Nb addition and heating rate employed. At the lower heating rate, uniform fine grained prior austenite grain structures developed in the 0.06 and 0.1 Nb steels while a duplex grain structure with the presence of large (>200 μm grains) developed in the 0.02 Nb steel. At the higher heating rate the propensity for abnormal grain growth was highest in the 0.02 Nb steel and complete suppression of abnormal grain growth was achieved only with the 0.1 Nb steel.
Technical Paper

Investigation of S-N Test Data Scatter of Carburized 4320 Steel

2007-04-16
2007-01-1006
A series of bending fatigue tests were conducted and S-N data were obtained for two groups of 4320 steel samples: (1) carburized, quenched and tempered, (2) carburized, quenched, tempered and shot peened. Shot peening improved the fatigue life and endurance limit. The S-N data exhibited large scatter, especially for carburized samples and at the high cycle life regime. Sample characterization work was performed and scatter bands were established for residual stress distributions, in addition to fracture and fatigue properties for 4320 steel. Moreover, a fatigue life analysis was performed using fracture mechanics and strain life fatigue theories. Scatter in S-N curves was established computationally by using the lower bound and upper bound in materials properties, residual stress and IGO depth in the input data. The results for fatigue life analysis, using either computational fracture mechanics or strain life theory, agreed reasonably well with the test data.
Technical Paper

Sheet Thinning during Plane-Strain Bending

2009-04-20
2009-01-1394
Knowledge of the net thinning strain that occurs in a sheet as it is bent over a single radius is an important component in understanding sheet metal formability. The present study extends the initial work of Swift on thinning during plane-strain bending to sheet steels with power law stress-strain behavior and with the inclusion of friction. The experimental data come from studies on the enhanced forming limit curve on DQSK steel and analysis of the curl behavior of 590R and DP600 steels. Results for single radius bending from these studies are used in the present investigation. It has been found that the amount of net thinning strain depends on back tension, initial plane-strain yield strength, and the maximum true bending strain calculated for the neutral plane at the mid-thickness of the sheet.
Technical Paper

Crash Safety of Lithium-Ion Batteries Towards Development of a Computational Model

2010-04-12
2010-01-1078
Battery packs for Hybrids, Plug-in Hybrids, and Electric Vehicles are assembled from a system of modules (sheets) with a tight sheet metal casing around them. Each module consists of an array of individual cells which vary in the composition of electrodes and separator from one manufacturer to another. In this paper a general procedure is outlined on the development of a constitutive and computational model of a cylindrical cell. Particular emphasis is placed on correct prediction of initiation and propagation of a tearing fracture of the steel can. The computational model correctly predicts rupture of the steel can which could release aggressive chemicals, fumes, or spread the ignited fire to the neighboring cells. The initiation site of skin fracture depends on many factors such as the ductility of the casing material, constitutive behavior of the system of electrodes, and type of loading.
Technical Paper

Tensile Properties of Steel Tubes for Hydroforming Applications

2004-03-08
2004-01-0512
With the increased use of tubular steel products, especially for automotive hydroforming applications, there is increased interest in understanding the mechanical properties measured by tensile tests from specimens of different orientations in the tube. In this study, two orientations of tensile specimens were evaluated -- axial specimens with and without flattening and flattened circumferential specimens. Three steels were evaluated -- two thicknesses of aluminum killed drawing quality (AKDQ) steel and one thickness of high strength low alloy (HSLA) steel. Mechanical property data were obtained from the flat stock, conventional production tubes and quasi tubes. Quasi tubes were produced from the flat stock on a 3-roll bender, but the quasi tube was not welded or sized.
Technical Paper

Crashworthiness of Thin Ultra-light Stainless Steel Sandwich Sheets: From the Design of Core Materials to Structural Applications

2004-03-08
2004-01-0886
Thin sandwich sheets hold a promise for widespread use in automotive industry due to their good crash and formability properties. In this paper, thin stainless steel sandwich sheets with low-density core materials are investigated with regard to their performance in crashworthiness applications. The total thickness of the sandwich materials is about 1.2mm: 0.2mm thick facings and a 0.8mm thick sandwich core. Throughout the crushing of prismatic sandwich profiles, the sandwich facings are bent and stretched while the sandwich core is crushed under shear loading. Thus, a high shear crushing strength of the sandwich core material is beneficial for the overall energy absorption of the sandwich profile. It is shown theoretically that the weight specific shear crushing strength of hexagonal metallic honeycombs is higher than the one of fiber cores - irrespective of their relative density or microstructural geometry.
Technical Paper

Experimental Evaluation of Curl and Tensile Properties of Advanced High Strength Sheet Steels

2004-03-08
2004-01-1045
The response of HSLA steel, 590R, and dual-phase steel, DP-600, to non-uniform deformation imposed in a laboratory Bending-Under-Tension (BUT) test apparatus was evaluated. Samples were deformed with both low and high back tension forces at bend angles of 45 and 90 degrees, and evaluated to determine the “side-wall curl”, i.e. the curvature in the sheet section in contact with the die. The results indicate that there are no consistent differences between the two steels, 590R and DP-600. It was found that back tension, tensile strength and sheet thickness were the primary factors affecting curl. The bend angle has an influence on curl, with the curl radius at a 90° bend angle being greater than the curl radius at a 45° bend angle.
Technical Paper

Achieving An Affordable Low Emission Steel Vehicle; An Economic Assessment of the ULSAB-AVC Program Design

2002-03-04
2002-01-0361
Vehicle weight reduction, reduced costs and improved safety performance are the main driving forces behind material selection for automotive applications. These goals are conflicting in nature and solutions will be realized by innovative design, advanced material processing and advanced materials. Advanced high strength steels are engineered materials that provide a remarkable combination of formability, strength, ductility, durability, strain-rate sensitivity and strain hardening characteristics essential to meeting the goals of automotive design. These characteristics act as enablers to cost- and mass-effective solutions. The ULSAB-AVC program demonstrates a solution to these conflicting goals and the advantages that are possible with the utilization of the advance high strength steels and provides a prediction of the material content of future body structures.
Technical Paper

Optimized Carburized Steel Fatigue Performance as Assessed with Gear and Modified Brugger Fatigue Tests

2002-03-04
2002-01-1003
The effectiveness of three different techniques, designed to improve the bending fatigue life in comparison to conventionally processed gas-carburized 8620 steel, were evaluated with modified Brugger bending fatigue specimens and actual ring and pinion gears. The bending fatigue samples were machined from forged gear blanks from the same lot of material used for the pinion gear tests, and all processing of laboratory samples and gears was done together. Fatigue data were obtained on standard as-carburized parts and after three special processing histories: shot-peening to increase surface residual stresses; double heat treating to refined austenite grain size; and vacuum carburizing to minimize intergranular oxidation. Standard room-temperature S-N curves and endurance limits were obtained with the laboratory samples. The pinions were run as part of a complete gear set on a laboratory dynamometer and data were obtained at two imposed torque levels.
Technical Paper

Bending Fatigue Crack Characterization and Fracture Toughness of Gas Carburized SAE 4320 Steel

1992-02-01
920534
Crack initiation and propagation in an SAE 4320 steel gas carburized to a 1.0 mm case depth was examined in specimens subjected to bending fatigue. Cellulose acetate replicas of incrementally loaded specimens showed that small, intergranular cracks were initiated during static loading to stress levels just above the endurance limit. The intergranular cracks arrest and serve as initiation sites for semi-elliptical, transgranular fatigue crack propagation. The maximum depth of stable crack propagation was between 0.17 and 0.23 mm, a depth which corresponds to the maximum hardness of the carburized case. Three equations which provide approximations to the stress distribution in the fatigue specimens were used to calculate KIC for the carburized case with values of maximum applied stress and measured stable crack geometry.
Technical Paper

Effect of Sulfur on Microstructure and Properties of Medium-Carbon Microalloyed Bar Steels

1992-02-01
920532
Three heats of 0.40% carbon microalloyed steel, containing either 0.03 % or 0.10% sulfur, and with and without a 0.09% vanadium addition, were subjected to metallographic analysis and mechanical property testing. Bars were heated to austenitizing temperatures, between 1000°C and 1300°C. Significant amounts of intragranular ferrite, which has been associated with improved toughness, formed only in specimens containing vanadium and high sulfur which were austenitized above 1100°C. The balance of the microstructure consisted of ferrite which formed at prior austenite grain boundaries and large amounts of pearlite. High densities of manganese sulfide particles in the steels with high sulfur content effectively retarded austenite grain growth. The formation of significant amounts of intragranular ferrite decreased mean free ferrite spacing, effectively refined the pearlite structure, and lowered the Charpy V-notch impact transition temperature.
Technical Paper

A Methodology for Evaluating Body Architecture Concepts Using Technical Cost Modeling

2011-04-12
2011-01-0767
The ability to make accurate decisions concerning early body-in-white architectures is critical to an automaker since these decisions often have long term cost and weight impacts. We address this need with a methodology which can be used to assist in body architecture decisions using process-based technical cost modeling (TCM) as a filter to evaluate alternate designs. Despite the data limitations of early design concepts, TCM can be used to identify key trends for cost-effectiveness between design variants. A compact body-in-white architecture will be used as a case study to illustrate this technique. The baseline steel structure will be compared to several alternate aluminum intensive structures in the context of production volume.
Technical Paper

Comparison of Hole Expansion Properties of Quench & Partitioned, Quench & Tempered and Austempered Steels

2012-04-16
2012-01-0530
Quenching & Partitioning (Q&P) is receiving increased attention as a novel Advanced High Strength Steel (AHSS) processing route as promising tensile properties of the “third generation” have been reported. The current contribution reports hole expansion ratios (HER) of Q&P steels and compares the values with HERs obtained for “conventional” AHSS processing routes such as austempering and Quench & Tempering (Q&T). Intercritically annealed C-Mn-Al-Si-P and fully austenitized C-Mn-Si microstructures were studied. Optimum combinations of tensile strength and HER were obtained for fully austenitized C-Mn-Si Q&P samples. Higher HER values were obtained for Q&P than for Q&T steels for similar tempering/partitioning temperatures. Austempering following intercritical annealing results in higher HER than Q&P at similar tensile strength levels. In contrast, Q&P following full austenitization results in higher hole expansion than austempering even at higher strength levels.
Technical Paper

The Effective Unloading Modulus for Automotive Sheet Steels

2006-04-03
2006-01-0146
In stamping advanced high strength steels (AHSS), the deviations from desired part geometry caused by springback from a radius, curl, twist, and bow are major impediments to successfully producing AHSS parts. In general, the conventional elastic modulus is used to quantify the strain that occurs on unloading. This unloading strain causes deviations from desired part geometry. Considerable evidence in the literature indicates that for tensile testing, the conventional elastic modulus does not accurately describe the unloading strain. The present study uses new data and results from the literature to examine the average slope of tensile stress strain curves on unloading. This slope is termed the effective unloading modulus. The results from this study quantitatively describe how the effective unloading modulus decreases with increasing strength, prestrain, and unloading time.
X