Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Inverse Method for Measuring Weld Temperatures during Resistance Spot Welding

2001-03-05
2001-01-0437
A new monitoring system predicts the progression of welding temperature fields during resistance spot welding. The system captures welding voltages and currents to predict contact diameters and simulate temperature fields. The system accurately predicts fusion lines and heat-affected zones. Accuracy holds even for electrode tips used for a few thousand welds of zinc coated steels.
Technical Paper

Piston Fuel Film Observations in an Optical Access GDI Engine

2001-05-07
2001-01-2022
A gasoline direct injection fuel spray was observed using a fired, optical access, square cross-section single cylinder research engine and high-speed video imaging. Spray interaction with the piston is described qualitatively, and the results are compared with Computational Fluid Dynamics (CFD) simulation results using KIVA-3V version 2. CFD simulations predicted that within the operating window for stratified charge operation, between 1% and 4% of the injected fuel would remain on the piston as a liquid film, dependent primarily on piston temperature. The experimental results support the CFD simulations qualitatively, but the amount of fuel film remaining on the piston appears to be under-predicted. High-speed video footage shows a vigorous spray impingement on the piston crown, resulting in vapor production.
Technical Paper

Waste and Hygiene Compartment for the International Space Station

2001-07-09
2001-01-2225
The Waste and Hygiene Compartment will serve as the primary facility for metabolic waste management and personal hygiene on the United States segment of the International Space Station. The Compartment encloses the volume of two standard ISS racks and will be installed into Node 3 after launch inside a Multipurpose Logistics Module on the Space Shuttle. Long duration space flight requires a departure from the established hygiene and waste disposal practices employed on the Space Shuttle. This paper describes requirements and a conceptual design for the Waste and Hygiene Compartment that are both logistically practical and acceptable to the crew.
Technical Paper

Space Life Support from the Cellular Perspective

2001-07-09
2001-01-2229
Determining the fundamental role of gravity in vital biological systems in space is one of six science and research areas that provides the philosophical underpinning for why NASA exists. The study of cells, tissues, and microorganisms in a spaceflight environment holds the promise of answering multiple intriguing questions about how gravity affects living systems. To enable these studies, specimens must be maintained in an environment similar to that used in a laboratory. Cell culture studies under normal laboratory conditions involve maintaining a highly specialized environment with the necessary temperature, humidity control, nutrient, and gas exchange conditions. These same cell life support conditions must be provided by the International Space Station (ISS) Cell Culture Unit (CCU) in the unique environment of space. The CCU is a perfusion-based system that must function in microgravity, at unit gravity (1g) on earth, and from 0.1g up to 2g aboard the ISS centrifuge rotor.
Technical Paper

Early Results of an Integrated Water Recovery System Test

2001-07-09
2001-01-2210
The work presented in this paper summarizes the early results of an integrated advanced water recovery system test conducted by the Crew and Thermal Systems Division (CTSD) at NASA-Johnson Space Center (JSC). The system design and the results of the first two months of operation are presented. The overall objective of this test is to demonstrate the capability of an integrated advanced water recovery system to produce potable quality water for at least six months. Each subsystem is designed for operation in microgravity. The primary treatment system consists of a biological system for organic carbon and ammonia removal. Dissolved solids are removed by reverse osmosis and air evaporation systems. Finally, ion exchange technology in combination with photolysis or photocatalysis is used for polishing of the effluent water stream. The wastewater stream consists of urine and urine flush water, hygiene wastewater and a simulated humidity condensate.
Technical Paper

A New Design for Automotive Alternators

2000-11-01
2000-01-C084
This paper introduces a new design for alternator systems that provides dramatic increases in peak and average power output from a conventional Lundell alternator, along with substantial improvements in efficiency. Experimental results demonstrate these capability improvements. Additional performance and functionality improvements of particular value for high-voltage (e.g., 42 V) alternators are also demonstrated. Tight load-dump transient suppression can be achieved using this new design and the alternator system can be used to implement jump charging (the charging of the high-voltage system battery from a low-voltage source). Dual-output extensions of the technique (e.g., 42/14 V) are also introduced. The new technology preserves the simplicity and low cost of conventional alternator designs, and can be implemented within the existing manufacturing infrastructure.
Technical Paper

Modeling NO Formation in Spark Ignition Engines with a Layered Adiabatic Core and Combustion Inefficiency Routine

2001-03-05
2001-01-1011
A thermodynamic based cycle simulation which uses a thermal boundary layer, either, a fully mixed or layered adiabatic core, and a crevice combustion inefficiency routine has been used to explore the sensitivity of NO concentration predictions to critical physical modeling assumptions. An experimental database, which included measurements of residual gas fraction, was obtained from a 2.0 liter Nissan engine while firing on propane. A model calibration methodology was developed to ensure accurate predictions of in-cylinder pressure and burned gas temperature. Comparisons with experimental NO data then showed that accounting for temperature stratification during combustion with a layered adiabatic core and including a crevice/combustion inefficiency routine, improved the match of modeling predictions to data, in comparison to a fully mixed adiabatic core.
Technical Paper

Prediction of the Knock Limit and Viable Operating Range for a Homogeneous-Charge Compression-Ignition (HCCI) Engine

2003-03-03
2003-01-1092
A method is presented for predicting the viable operating range of homogeneous-charge compression-ignition (HCCI) engines. A fundamental criterion for predicting HCCI knock is described and used to predict the minimum air/fuel ratio (and hence maximum torque) available from the engine. The lean (misfire) limit is computed using a modification of the multi-zone method of Aceves et al. [1]. Numerical improvements are described which allow even very complex fuel chemistry to be rapidly modeled on a standard PC. The viable operating range for an HCCI engine burning a primary reference fuel (PRF 95) is predicted and compared with literature experimental data. The new ability to accurately predict the operating range for any given HCCI engine/fuel combination should considerably simplify the tasks of designing a robust engine and identifying suitable fuels for HCCI.
Technical Paper

Advanced Regenerable CoD2 Removal Technologies Applicable to Future Emus

1996-07-01
961484
The NASA Shuttle Extravehicular Mobility Unit (EMU) uses a non-regenerable absorbent to remove CO2 from an astronaut's breathing loop. A savings in launch weight, storage volume and life cycle cost may be achieved by incorporating a regenerable CO2 removal system into the EMU. This paper will discuss regenerable CO2 sorbents and their impact on the life support system of an EMU. The systems evaluated will be judged on their technical maturity, impact to the EMU, and impacts to space station and shuttle operation
Technical Paper

Control of Air Revitalization Using Plants: Results of the Early Human Testing Initiative Phase I Test

1996-07-01
961522
The Early Human Testing Initiative (EHTI) Phase I Human Test, performed by the Crew and Thermal Systems Division at Johnson Space Center, demonstrated the ability of a crop of wheat to provide air revitalization for a human test subject for a 15-day period. The test demonstrated three different methods for control of oxygen and carbon dioxide concentrations for the human/plant system and obtained data on trace contaminants generated by both the human and plants during the test and their effects on each other. The crop was planted in the Variable Pressure Growth Chamber (VPGC) on July 24, 1995 and the test subject entered the adjoining airlock on day 17 of the wheat's growth cycle. The test subject stayed in the chamber for a total of 15 days, 1 hour and 20 minutes. Air was mixed between the plant chamber and airlock to provide oxygen to the test subject and carbon dioxide to the plants by an interchamber ventilation system.
Technical Paper

Collection and Chemical Analysis of Reclaimed Water and Condensate from the Mir Space Station

1996-07-01
961569
Potable- and hygiene-quality water will be supplied to crews on the International Space Station through the recovery and purification of spacecraft wastewaters, including humidity condensate, urine, and wash water. Contaminants released into the cabin air from human metabolism, hardware offgassing, flight experiments, and routine operations will be present in spacecraft humidity condensate; normal constituents of urine and bathing water will be present in urine and untreated wash water. This report describes results from detailed analyses of Mir reclaimed potable water, ground-supplied water, and humidity condensate. These results are being used to develop and test water recycling and monitoring systems for the International Space Station (ISS); to evaluate the efficiency of the Mir water processors; and to determine the potability of the recycled water on board.
Technical Paper

A Total Organic Carbon Analyzer for Space Potable Water Systems

1996-07-01
961570
A Total Organic Carbon (TOC) Analyzer has been developed for a Life Sciences Risk Mitigation Flight Experiment to be conducted on Spacehab and the Russian space station, Mir. Initial launch is scheduled for December 1996 (flight STS-81). The analyzer will be tested on the Orbiter in the Spacehab module, including when the Orbiter is docked at the Mir space station. The analyzer is scheduled to be launched again in May 1997 (STS-84) when it will be transferred to Mir. During both flights the analyzer will measure the quality of recycled and ground-supplied potable water on the space station. Samples will be archived for later return to the ground, where they will be analyzed for comparison to in-flight results. Water test samples of known composition, brought up with the analyzer, also will be used to test its performance in microgravity. Ground-based analyses of duplicates of those test samples will be conducted concurrently with the in-flight analyses.
Technical Paper

Ultralight Fabric Reflux Tube (UFRT) Thermal/Vacuum Test

1996-07-01
961455
Spacecraft thermal control systems are essential to provide the necessary thermal environment for the crew and to ensure that the equipment functions adequately on space missions. The Ultralight Fabric Reflux Tube (UFRT) was developed by the Pacific Northwest National Laboratory as a lightweight radiator concept to be used on planetary surface-type missions (e.g., Moon, Mars). The UFRT consists of a thin-walled tube (acting as the fluid boundary), overwrapped with a low-mass ceramic fabric (acting as the primary pressure boundary). The tubes are placed in an array in the vertical position with the evaporators at the lower end. Heat is added to the evaporators, which vaporizes the working fluid. The vapor travels to the condenser end section and condenses on the inner wall of the thin-walled tube. The resulting latent heat is radiated to the environment. The fluid condensed on the tube wall is then returned to the evaporator by gravity.
Technical Paper

Time-Resolved, Speciated Emissions from an SI Engine During Starting and Warm-Up

1996-10-01
961955
A sampling system was developed to measure the evolution of the speciated hydrocarbon emissions from a single-cylinder SI engine in a simulated starting and warm-up procedure. A sequence of exhaust samples was drawn and stored for gas chromatograph analysis. The individual sampling aperture was set at 0.13 s which corresponds to ∼ 1 cycle at 900 rpm. The positions of the apertures (in time) were controlled by a computer and were spaced appropriately to capture the warm-up process. The time resolution was of the order of 1 to 2 cycles (at 900 rpm). Results for four different fuels are reported: n-pentane/iso-octane mixture at volume ratio of 20/80 to study the effect of a light fuel component in the mixture; n-decane/iso-octane mixture at 10/90 to study the effect of a heavy fuel component in the mixture; m-xylene and iso-octane at 25/75 to study the effect of an aromatics in the mixture; and a calibration gasoline.
Technical Paper

Environmental Control System for an Experimental Crew Return Vehicle

1997-07-01
972263
A small team of NASA engineers has been assembled at the Johnson Space Center, with the goal of developing an inexpensive space-capable vehicle. In order to minimize cost and development time of the experimental vehicle, it was desirable to build upon a previously-developed vehicle shape. The basic shape of the X-24A experimental lifting body was chosen for several reasons, and in the case of the Environmental Control and Life Support (ECLS), the de-orbit cross-range capability of this shape provides for a minimal on-orbit time while waiting for landing opportunities, which in turn simplifies the ECLS. Figure 1 shows the X-38 vehicle body shape. In keeping with the goal of rapidly developing an inexpensive and reliable vehicle, the ECLS was developed using simple, passive systems where practical. This paper provides an overview of the ECLS mission requirements and design, with emphasis on the philosophy used in its development.
Technical Paper

Orbiter Flash Evaporator: Flight Experience and Improvements

1997-07-01
972262
The Flash Evaporator Subsystem (FES) provides active cooling for the Shuttle Orbiter vehicle during the ascent and re-entry phases of the flight and provides supplemental cooling to the radiators while on-orbit. This paper describes the design and operation of the FES and summarizes the operational flight experience to date. As the fleet of orbiters grows older, contamination and corrosion are two issues on which attention has focused. A discussion of these conditions and the subsequent design changes and operational workarounds will be summarized.
Technical Paper

Comparison Studies of Candidate Nutrient Delivery Systems for Plant Cultivation in Space

1997-07-01
972304
A reliable nutrient delivery system is essential for long-term cultivation of plants in space. At the Kennedy Space Center, a series of ground-based tests are being conducted to compare candidate plant nutrient delivery systems for space. To date, our major focus has concentrated on the Porous Tube Plant Nutrient Delivery System, the ASTROCULTURE™ System, and a zeoponic plant growth substrate. The merits of each system are based upon the performance of wheat supported over complete growth cycles. To varying degrees, each system supported wheat biomass production and showed distinct patterns for plant nutrient uptake and water use.
Technical Paper

Operational Psychological Issues for Mars and other Exploration Missions

1997-07-01
972290
Long duration NASA-Mir program missions, and the planned International Space Station missions, have given impetus for NASA to implement an operational program of psychological preparation, monitoring, and support for its crews. For exploration missions measured in years, the importance of psychological issues increases exponentially beyond what is currently done. Psychologists' role should begin during the vehicle design and crew selection phases. Extensive preflight preparation must focus on individual and team adaptation, and leadership. Factors such as lack of resupply options and communication delays will alter in-flight monitoring and support capabilities, and require a more self-sufficient crew. Involvement in postflight recovery will also be necessry to ensure appropriate reintegration to the family and job.
Technical Paper

Bioregenerative Planetary Life Support Systems Test Complex: Facility Description and Testing Objectives

1997-07-01
972342
As a key component in its ground test bed capability, NASA's Advanced Life Support Program has been developing a large-scale advanced life support facility capable of supporting long-duration testing of integrated bioregenerative life support systems with human test crews. This facility, the Bioregenerative Planetary Life Support Systems Test Complex (BIO-Plex), is currently under development at the Johnson Space Center. The BIO-Plex is comprised of a set of interconnected test chambers with a sealed internal environment capable of supporting test crews of four individuals for periods exceeding one year. The life support systems to be tested will consist of both biological and physicochemical technologies and will perform all required air revitalization, water recovery, biomass production, food processing, solid waste processing, thermal management, and integrated command and control functions.
Technical Paper

Summary of Resources for the International Space Station Environmental Control and Life Support System

1997-07-01
972332
The assembly complete Environmental Control and Life Support (ECLS) system for the International Space Station (ISS) will consist of components and subsystems in both the U.S. and International partner elements which together will perform the functions of Temperature and Humidity Control (THC), Atmosphere Control and Supply (ACS), Atmosphere Revitalization (AR), Water Recovery and Management (WRM), Waste Management (WM), Fire Detection and Suppression (FDS), and Vacuum System (VS) for the station. Due to limited resources available on ISS, detailed attention is given to minimizing and tracking all resources associated with all systems, beginning with estimates during the hardware development phase through measured actuals when flight hardware is built and delivered. A comprehensive summary of resources consumed by the U.S.
X