Refine Your Search

Topic

Search Results

Technical Paper

Evolution and Future Development of Vehicle Fuel Specification in China

2021-09-21
2021-01-1201
Fuel quality has a significant influence on the combustion engine operation. In recent years the increasing concerns about environmental protection, energy saving, energy security and the requirements of protecting fuel injection and aftertreatment systems have been major driving forces for the Chinese fuel specification evolution. The major property changes in the evolution of Chinese national gasoline and diesel standards are introduced and the reasons behind these changes are analyzed in this paper. The gasoline fuel development from State I to State VI-B involved a decrease of sulfur, manganese, olefins, aromatics and benzene content. The diesel fuel quality improvement from State I to State VI included achieving low sulfur fuels and a cetane number (CN) increase. Provincial fuel standards, stricter than corresponding national standards, were implemented in economically developed areas in the past.
Journal Article

High Speed Imaging Study on the Spray Characteristics of Dieseline at Elevated Temperatures and Back Pressures

2014-04-01
2014-01-1415
Dieseline combustion as a concept combines the advantages of gasoline and diesel by offline or online blending the two fuels. Dieseline has become an attractive new compression ignition combustion concept in recent years and furthermore an approach to a full-boiling-range fuel. High speed imaging with near-parallel backlit light was used to investigate the spray characteristics of dieseline and pure fuels with a common rail diesel injection system in a constant volume vessel. The results were acquired at different blend ratios, and at different temperatures and back pressures at an injection pressure of 100MPa. The penetrations and the evaporation states were compared with those of gasoline and diesel. The spray profile was analyzed in both area and shape with statistical methods. The effect of gasoline percentage on the evaporation in the fuel spray was evaluated.
Journal Article

On the Nature of Particulate Emissions from DISI Engines at Cold-Fast-Idle

2014-04-01
2014-01-1368
Particulate emissions from a production gasoline direct injection spark ignition engine were studied under a typical cold-fast-idle condition (1200 rpm, 2 bar NIMEP). The particle number (PN) density in the 22 to 365 nm range was measured as a function of the injection timing with single pulse injection and with split injection. Very low PN emissions were observed when injection took place in the mid intake stroke because of the fast fuel evaporation and mixing processes which were facilitated by the high turbulent kinetic energy created by the intake charge motion. Under these conditions, substantial liquid fuel film formation on the combustion chamber surfaces was avoided. PN emissions increased when injection took place in the compression stroke, and increased substantially when the fuel spray hit the piston.
Technical Paper

The Effect of Operating Conditions at Idle in the S.I. Engine

1997-10-01
972990
A gasoline engine with an electronically controlled fuel injection system has substantially better fuel economy and lower emissions than a carburetted engine. In general, the stability of engine operation is improved with fuel injector, but the stability of engine operation at idle is not improved compared with a carburetted gasoline engine. In addition, the increase in time that an engine is at idle due to traffic congestion has an effect on the engine stability and vehicle reliability. Therefore, in this research, we will study the influence of fuel injection timing, spark timing, dwell angle, and air-fuel ratio on engine stability at idle.
Technical Paper

Early Spray Development in Gasoline Direct-Injected Spark Ignition Engines

1998-02-23
980160
The characteristics of the early development of fuel sprays from pressure swirl atomizer injectors of the type used in direct injection gasoline engines is investigated. Planar laser-induced fluorescence (PLIF) was used to visualize the fuel distribution inside a firing optical engine. The early spray development of three different injectors at three different fuel pressures (3, 5, and 7 MPa) was followed as a function of time in 30 μsec intervals. Four phases could be identified: 1) A delay phase between the rising edge of the injection pulse and the first occurrence of fuel in the combustion chamber, 2) A solid jet or pre-spray phase, in which a poorly atomized stream of liquid fuel during the first 150 μsec of the injection. 3) A wide hollow cone phase, separation of the liquid jet into a hollow cone spray once sufficient tangential velocity has been established and 4) A fully developed spray, in which the spray cone angle is narrowed due to a low pressure zone at the center.
Technical Paper

Research on Steady and Transient Performance of an HCCI Engine with Gasoline Direct Injection

2008-06-23
2008-01-1723
In this paper, a hybrid combustion mode in four-stroke gasoline direct injection engines was studied. Switching cam profiles and injection strategies simultaneously was adopted to obtain a rapid and smooth switch between SI mode and HCCI mode. Based on the continuous pressure traces and corresponding emissions, HCCI steady operation, HCCI transient process (combustion phase adjustment, SI-HCCI, HCCI-SI, HCCI cold start) were studied. In HCCI mode, HCCI combustion phase can be adjusted rapidly by changing the split injection ratio. The HCCI control strategies had been demonstrated in a Chery GDI2.0 engine. The HCCI engine simulation results show that, oxygen and active radicals are stored due to negative valve overlap and split fuel injection under learn burn condition. This reduces the HCCI sensitivity on inlet boundary conditions, such as intake charge and intake temperature. The engine can be run from 1500rpm to 4000rpm in HCCI mode without spark ignition.
Technical Paper

Liquid Fuel Visualization Using Laser-Induced Fluoresence During Cold Start

1998-10-19
982466
The presence of liquid fuel inside the engine cylinder is believed to be a strong contributor to the high levels of hydrocarbon emissions from spark ignition (SI) engines during the warm-up period. Quantifying and determining the fate of the liquid fuel that enters the cylinder is the first step in understanding the process of emissions formation. This work uses planar laser induced fluorescence (PLIF) to visualize the liquid fuel present in the cylinder. The fluorescing compounds in indolene, and mixtures of iso-octane with dopants of different boiling points (acetone and 3-pentanone) were used to trace the behavior of different volatility components. Images were taken of three different planes through the engine intersecting the intake valve region. A closed valve fuel injection strategy was used, as this is the strategy most commonly used in practice. Background subtraction and masking were both performed to reduce the effect of any spurious fluorescence.
Technical Paper

Application of Narrow Cone Angle Injectors to Achieve Advanced Compression Ignition on a Mass-Production Diesel Engine - Control Strategy and Engine Performance Evaluation

2009-11-02
2009-01-2700
Advanced compression ignition combustion system which reduces simultaneously both nitride oxides (NOx) and particulate matter (PM) is a promising approach to meet future emission regulations. In order to achieve advanced compression ignition, flexible fuel injection is required for ultra-early and post-TDC injections, which conventional injector fails to accomplish due to wall-wetting effect. In this work, special injectors with the spray angle of 60 degree are applied on a 4 cylinder mass-production diesel engine without modification of the engine configuration. For application-oriented study, sweep experiments of injection timings and durations, fuel injection pressure and the boost pressure are carried out to investigate the relationships between the control parameters and the engine performance. Model based calibration and real application tests validate the maximum applicable operation range of maximum speed of 2200 RPM and IMEP of 8.0 bar.
Technical Paper

Study on Modeling Method for Common Rail Diesel Engine Calibration and Optimization

2004-03-08
2004-01-0426
The large amount of controllable fuel injection parameters of Diesel engine equipped with high pressure common-rail fuel injection system makes the control of combustion more flexible, and also makes the workload of calibration and optimization much heavier. For higher efficiency, model-based approaches are presented and researched. This contribution presents a new method for modeling which is constituted by Neural Network and Adaptive Network-based Fussy Inference System (ANFIS). The experiment is carried out on a 6-cylinder common rail diesel engine. The analysis and experiment show that effective modeling can be achieved using this method.
Technical Paper

Piston Fuel Film Observations in an Optical Access GDI Engine

2001-05-07
2001-01-2022
A gasoline direct injection fuel spray was observed using a fired, optical access, square cross-section single cylinder research engine and high-speed video imaging. Spray interaction with the piston is described qualitatively, and the results are compared with Computational Fluid Dynamics (CFD) simulation results using KIVA-3V version 2. CFD simulations predicted that within the operating window for stratified charge operation, between 1% and 4% of the injected fuel would remain on the piston as a liquid film, dependent primarily on piston temperature. The experimental results support the CFD simulations qualitatively, but the amount of fuel film remaining on the piston appears to be under-predicted. High-speed video footage shows a vigorous spray impingement on the piston crown, resulting in vapor production.
Technical Paper

Study of Near Nozzle Spray Characteristics of Ethanol under Different Saturation Ratios

2016-10-17
2016-01-2189
Atomization of fuel sprays is a key factor in controlling the combustion quality in the direct-injection engines. In this present work, the effect of saturation ratio (Rs) on the near nozzle spray patterns of ethanol was investigated using an ultra-high speed imaging technique. The Rs range covered both flash-boiling and non-flash boiling regions. Ethanol was injected from a single-hole injector into an optically accessible constant volume chamber at a fixed injection pressure of 40 MPa with different fuel temperatures and back pressures. High-speed imaging was performed using an ultrahigh speed camera (1 million fps) coupled with a long-distance microscope. Under non-flash boiling conditions, the effect of Rs on fuel development was small but observable. Clear fuel collision can be observed at Rs=1.5 and 1.0. Under the flash boiling conditions, near-nozzle spray patterns were significant different from the non-flash boiling ones.
Technical Paper

Simulation of Catalyzed Diesel Particulate Filter for Active Regeneration Process Using Secondary Fuel Injection

2017-10-08
2017-01-2287
Advanced exhaust after-treatment technology is required for heavy-duty diesel vehicles to achieve stringent Euro VI emission standards. Diesel particulate filter (DPF) is the most efficient system that is used to trap the particulate matter (PM), and particulate number (PN) emissions form diesel engines. The after-treatment system used in this study is catalyzed DPF (CDPF) downstream of diesel oxidation catalyst (DOC) with secondary fuel injection. Additional fuel is injected upstream of DOC to enhance exothermal heat which is needed to raise the CDPF temperature during the active regeneration process. The objective of this research is to numerically investigate soot loading and active regeneration of a CDPF on a heavy-duty diesel engine. In order to improve the active regeneration performance of CDPF, several factors are investigated in the study such as the effect of catalytic in filter wall, soot distribution form along filter wall, and soot loads.
Technical Paper

Fuel Effects on HCCI Operation in a Spark Assisted Direct Injection Gasoline Engine

2011-08-30
2011-01-1763
The fuel effects on HCCI operation in a spark assisted direct injection gasoline engine are assessed. The low load limit has been extended with a pilot fuel injection during the negative valve overlap (NVO) period. The fuel matrix consists of hydrocarbon fuels and various ethanol blends and a butanol blend, plus fuels with added ignition improvers. The hydrocarbon fuels and the butanol blend do not significantly alter the high or the low limits of operation. The HCCI operation appears to be controlled more by the thermal environment than by the fuel properties. For E85, the engine behavior depends on the extent that the heat release from the pilot injected fuel in the NVO period compensates for the evaporative cooling of the fuel.
Technical Paper

Numerical Investigation on the Effect of Fuel Temperature on Spray Collapse and Mixture Formation Characteristics in GDI Engines

2018-04-03
2018-01-0311
Spray atomization, spray-wall impingement, and mixture formation are key factors in affecting the particulate matter (PM) emission in gasoline direct injection (GDI) engines. Current knowledge of wall-wetting phenomenon and mixture formation are mostly based on the studies that the fuel is injected at ordinary temperature and various ambient conditions. In the real GDI engine, the fuel pipe and injector are always heated up by the pump and the engine body, especially at hot engine conditions, thus the fuel temperature is always higher than the ordinary temperature, and the relevant research is still limited. The aim of this study is to numerically investigate the spray, spray-wall impingement, and mixture formation characteristics under different fuel temperature conditions, so as to provide theoretical support in optimizing the combustion performance and further reducing the PM emission of GDI engines.
Technical Paper

A Comparative Study on Different Dual-Fuel Combustion Modes Fuelled with Gasoline and Diesel

2012-04-16
2012-01-0694
Comparisons have been made between dual-fuel (80% port-injection gasoline and 20% direct-injection diesel by mass) Highly Premixed Charge Combustion (HPCC) and blended-fuel (80% gasoline and 20% diesel) Low Temperature Combustion (LTC) modes on a 1-L single-cylinder test engine. In the HPCC mode, both early-injection (E-HPCC) and late-injection (L-HPCC) of diesel have been used. The comparisons have been conducted with a fixed fuel injection rate of 50 mg/cycle at 1500 rpm, and with the combustion phasing fixed (by adjusting the injection timing) so that the 50% heat release point (CA50) is at 8° ATDC. The rapid heat release process of LTC leads to the highest maximum pressure rise rate (MPRR). A two-peak heat release process is observed in L-HPCC, resulting in a lower MPRR. The heat release rate and MPRR values for the E-HPCC are comparable to the L-HPCC values. The EHPCC mode provides the lowest NOX emission. The soot emissions for all three modes are low.
Technical Paper

Large Eddy Simulation of Liquid Fuel Spray and Combustion with Gradually Varying Grid

2013-10-14
2013-01-2634
In this work, large eddy simulation (LES) with a K-equation subgrid turbulent kinetic energy model is implemented into the CFD code KIVA3V to study the features of liquid fuel spray and combustion using gradually varying grid in a constant volume chamber. The characteristic time-scale combustion model (CTC) incorporating a turbulent timescale is adopted to predict the combustion process and the SHELL auto-ignition model is used to predict auto-ignition. Combustion is also simulated using Parallel Detailed Chemistry with Lu's n-heptane reduced mechanism (58 species), which has been added into the KIVA3V-LES code. The computational results are compared with Sandia experimental data for non-reacting and reacting cases. As a result, LES can capture the complex structure of the spray and temperature distribution as well as the trend of ignition delay and flame lift-off length variations. Better results are obtained using the Parallel Detailed Chemistry than the CTC model.
Technical Paper

Numerical Study of DMF and Gasoline Spray and Mixture Preparation in a GDI Engine

2013-04-08
2013-01-1592
2, 5-Dimethylfuran (DMF) has been receiving increasing interest as a potential alternative fuel to fossil fuels, owing to the recent development of new production technology. However, the influence of DMF properties on the in-cylinder fuel spray and its evaporation, subsequent combustion processes as well as emission formation in current gasoline direct injection (GDI) engines is still not well understood, due to the lack of comprehensive understanding of its physical and chemical characteristics. To better understand the spray characteristics of DMF and its application to the IC engine, the fuel sprays of DMF and gasoline were investigated by experimental and computational methods. The shadowgraph and Phase Doppler Particle Analyzer (PDPA) techniques were used for measuring spray penetration, droplet velocity and size distribution of both fuels.
Technical Paper

Modeling the Evolution of Fuel and Lubricant Interactions on the Liner in Internal Combustion Engines

2018-04-03
2018-01-0279
In internal combustion engines, a portion of liquid fuel spray may directly land on the liner and mix with oil (lubricant), forming a fuel-oil film (~10μm) that is much thicker than the original oil film (~0.1μm). When the piston retracts in the compression stroke, the fuel-oil mixture may have not been fully vaporized and can be scraped by the top ring into the 1st land crevice and eventually enter the combustion chamber in the format of droplets. Studies have shown that this mechanism is possibly a leading cause for low-speed pre-ignition (LSPI) as the droplets contain oil that has a much lower self-ignition temperature than pure fuel. In this interest, this work aims to study the oil-fuel interactions on the liner during an engine cycle, addressing molecular diffusion (in the liquid film) and vaporization (at the liquid-gas interface) to quantify the amount of fuel and oil that are subject to scraping by the top ring, thereby exploring their implications on LSPI and friction.
Technical Paper

Study of the Injection Control Valve in a New Electronic Diesel Fuel System

1998-02-23
980813
At first, the dynamic electromagnetic characteristics of a pulsed solenoid valve is analyzed by experiments. The fast valve response is obtained by material modifications. Then, the intelligent solenoid driving method is discussed. The new techniques of the “active” PWM and the “d2i/dt2” detection are developed for feedback control of the solenoid holding current and the valve closure timing. Finally, the control and diagnosis method for the valve closure duration is investigated. A sensing mechanism utilizing momentary camshaft speed fluctuations of fuel injection pump is presented, which provides the basis for feedback control and diagnosis of the valve closure duration and diesel fuel injection process.
Technical Paper

Visualization of Mixture Preparation in a Port-Fuel Injection Engine During Engine Warm-up

1995-10-01
952481
The fuel injection process in the port of a firing 4-valve SI engine at part load and 25°C head temperature was observed by a high speed video camera. Fuel was injected when the valve was closed. The reverse blow-down flow when the intake valve opens has been identified as an important factor in the mixture preparation process because it not only alters the thermal environment of the intake port, but also strip-atomizes the liquid film at the vicinity of the intake valve and carries the droplets away from the engine. In a series of “fuel-on” experiments, the fuel injected in the current cycle was observed to influence the fuel delivery to the engine in the subsequent cycles.
X