Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Development of Lighter-Weight, Higher-Stiffness Body for New RX-7

To realize high levels of handling, driving performance, and NVH characteristics for a sports car, it is important to develop a lightweight and high-stiffness vehicle body. For the new RX-7, weight saving and higher stiffness were pursued as top priorities from the very first stage of the program. We were able to achieve 20% higher bending stiffness and 15% higher torsional stiffness with vehicle weight reduced by 30 kg, compared with the former model. The development of the lightweight, high-stiffness body for the new RX-7 is discussed under three subjects: 1. Contributions of vehicle components to vehicle stiffness 2. Effective procedure for developing vehicle high stiffness and lightweight construction with emphasis on calculation analysis 3. New RX-7's body structure and accomplishment
Technical Paper

Vehicle Front Structure in Consideration of Compatibility

A structure which effectively improves compatibility in a vehicle-to-vehicle frontal impact has been considered focusing on sub-frame structure that disperses applied force with multiple load paths. Evolved sub-frame structure has been studied by CAE with RADIOSS to search the possibility to reduce aggressivity and to improve self-protection at the same time. Vehicle models used for this compatibility study were a large saloon car with sub-frame and a small family car without sub-frame. The large saloon car had three different front structures: original, forward-extended sub-frame, and original with 25%-stiffness reduced structures. The types of collision contained four different crash modes in a combination of lateral overlap rate difference and side member height difference.