Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Estimation Method for Automobile Aerodynamic Noise

1992-02-01
920205
Cost and weight reduction considerations make it very important to evaluate and reduce aerodynamic noise in the early stage of vehicle develpment. For these reasons, a method to evaluate aerodynamic noise quantitatively is needed. As an initial step, our first paper investigated airflow around the A-pillar of a full-scale vehicle. As a result, vortical flow structure and the influence of the vortical flow on the pressure fluctuations were clarified. As the second step, this paper presents an estimation method for the aerodynamic noise from a vehicle. Based on Lighthill's equation, we propose an evaluation equation to estimate aerodynamic noise. The aerodynamic noise radiated externally from a vehicle is estimated as ∑(Pfi,fi,Sfi)2 Where Pfi is the fluctuating pressure on the surface of the vehicle, fi the frequency and Sfi the correlation area. The method is applied to the aerodynamic noise problem associated with the A-pillar of a vehicle.
Technical Paper

Numerical Study of Aerodynamic Noise Radiated from a Three-Dimensional Wing

1992-02-01
920341
In this paper, a prediction method of the aerodynamic sound emitted from the three-dimensional delta wing of the attack angle at 15 degrees is presented. Computed flow Reynolds numbers range from 2.39x1 05 up to 9.56X 105. The method is based on the assumptions: flow Mach number is much less than unity and the strength of sound source equals Curle's dipole. These assumptions are validated by the experimental works performed in a quiet-flow-noise wind tunnel. Owing to the low Mach number condition, the computation region can be devided into two regions: inner flow region and outer wave region. The incompressible flow computation in the inner region is performed based on the full Navier-Stokes equations. The integration of the N-S equations are executed by using finite-difference method. For high Reynolds flow computation, the nonlinear convection terms are discretized by third-order upwind difference scheme.
X