Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Influence of Mixture Stratification Patter non Combustion Characteristics in a Constant-Volume Combustion Chamber

A pancake-type constant-volume combustion chamber was used to investigate the combustion and NOx emission characteristics of propane-air and hydrogen-air mixtures under various charge stratification patterns, which were obtained by variations of the initial charge and injected mixture concentrations and the ignition spark timing. A planar laser-induced fluorescence from nitrogen dioxide as gas fuel tracer was applied to measure the mixture distribution in the test chamber. The second harmonic output of pulsed Nd; YAG laser was used as a light source for fluorescence excitation. The fluorescence images were corrected by a gated image-intensified CCD camera. The quantitative analysis of fuel concentration was made possible by the application of linearity between fluorescence intensity and NO2 concentration at low trace level.
Technical Paper

In-Cylinder Fuel Distribution, Flow Field, and Combustion Characteristics of a Mixture Injected SI Engine

In order to control the mixture formation, a mixture injected 4-valve SI engine was developed with a small mixture chamber and mechanically driven mixture injection valve installed into the cylinder head. The mixture injection valve was located at the center of the combustion chamber. The mixture was injected from the final stage of the intake stroke to the beginning of the compression stroke. The mixture distribution and in-cylinder flow field inside the combustion chamber were measured by a pair of laser two-dimensional visualization techniques. A planar-laser-induced exciplex fluorescence technique was used to visualize the in-cylinder mixture formation by obtaining spectrally separated fluorescence images of liquid and vapor phase fuel distribution. Particle image velocimetry (PIV) was used to obtain flow field images. In the case of the mixture injected SI engine, the mixture injected into the swirl center was retained during the compression stroke.
Technical Paper

Improving NOx and Fuel Economy for Mixture Injected SI Engine with EGR

A large quantity of recirculated exhaust gas is used to reduce NOx emissions and improve fuel economy at the same time. The effect of exhaust gas recirculation (EGR) was investigated under the stoichiometric and lean operating conditions and compared with the effect of lean operation without EGR. A mixture injected SI engine that has a mechanically driven mixture injection valve installed was prepared. In this engine, it is possible to charge combustible mixture independently from combustion air and recirculated exhaust gas introduced from intake port in order to stratify the mixture. The effect of the EGR ratio on NOx emissions and fuel consumption was measured under the stoichiometric and lean operating conditions. Due to the mixture distribution controlled by the mixture injection, a large quantity of recirculated exhaust gas could be introduced into the combustion chamber under the stoichiometric air/fuel ratio. The limit of EGR ratio was 48 %.
Technical Paper

Planar Measurements of OH Radicals in an S.I. Engine Based on Laser Induced Flourescence

The planar laser induced fluorescence (PLIF) technique was applied to two dimensional visualization of OH radicals in a combustion flame. A frequency doubled Nd:YAG laser pumped dye laser was used to form a laser light sheet which excited the OH X2Π-A2Σ transition. A fluorescence image of the OH radical and a visible image of a combustion flame were simultaneously imaged by a pair of CCD cameras with image intensifiers. Measurement of the OH radical in the combustion flame could be carried out by using this PLIF technique without Mie scattering lights from soot particles and other optical disturbances. The PLIF technique was employed to study the OH radical in the combustion chamber of a spark ignition (S. I.) engine using gasoline as fuel. Measurements of the OH radical fluorescence were carried out under various operating conditions of mass burned fraction, swirl ratio and air-fuel ratio.