Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Influence of Geometry of Rear part on the Aerodynamic Drag and Wake Structure of a Vehicle

The substantial part of the drag of an automobile is the pressure drag. Therefore, the car must be designed as it produces minimum pressure drag. The present paper describes effects of geometrical configuration of the rear part of a car on the aerodynamic drag. Experiments were made on 1/5 scale models of fastback and notchback design. For the fastback car the drag depends heavily on the angle of a rear window. At a certain critical angle the drag shows a sharp peak. This peak drag can be reduced drastically by the tapering of plan form of the rear geometry. For the notch-back design some combination of the angle of rear window and height of trunk deck shows similar maximum in the drag. Methods of avoiding the large drag were also found. Our experiment was extended to the measurement of structure of wake by hot wire anemometers and total pressure tubes. The correlation between the wake structure and drag was clarified by the consideration of vorticity and circulation.
Technical Paper

Unsteady-Wake Analysis of the Aerodynamic Drag of a Notchback Model with Critical Afterbody Geometry

For both notchback-type and fastback-type models, it has been found that critical geometries which increase the aerodynamic drag exist, and the time-averaged wake patterns basically consist of an arch vortex behind the rear window and trailing vortices in the wake. The unsteady characteristics of the wake seem to be directly related to aerodynamic drag. However, the unsteady characteristics of these wake patterns for notchback and fastback cars were not clear. The purpose of present paper is to clarify these phenomena. We try to analyze experimentally the unsteady characteristics by measuring the velocity fluctuations in the wake, the pressure fluctuations on the trunk deck and the drag-force fluctuations acting on the model. At the same time, the analysis of the numerical simulation was made by using the same numerical model as the experimental model. The computed flow visualization behind the rear window showed a fluctuating arch vortex.
Journal Article

Unsteady Vehicle Aerodynamics during a Dynamic Steering Action: 2nd Report, Numerical Analysis

Unsteady aerodynamic forces acting on vehicles during a dynamic steering action were investigated by numerical simulation, with a special focus on the vehicles' yaw and lateral motions. Two sedan-type vehicles with slightly different geometries at the front pillar, side skirt, under cover, and around the front wheel were adopted for comparison. In the first report, surface pressure on the body and total pressure behind the front wheel were measured in an on-road experiment. Then the relationships between the vehicles' lateral dynamic motion and unsteady aerodynamic characteristics during cornering motions were discussed. In this second report, the vehicles' meandering motions observed in on-road measurements were modeled numerically, and sinusoidal motions of lateral, yaw, and slip angles were imposed. The responding yaw moment was phase averaged, and its phase shift against the imposed slip angle was measured to assess the aerodynamic damping.