Refine Your Search

Topic

Search Results

Viewing 1 to 15 of 15
Journal Article

Oil Transport Cycle Model for Rotary Engine Oil Seals

2014-04-01
2014-01-1664
The rotary engine provides high power density compared to piston engine, but one of its downside is higher oil consumption. A model of the oil seals is developed to calculate internal oil consumption (oil leakage from the crankcase through the oil seals) as a function of engine geometry and operating conditions. The deformation of the oil seals trying to conform to housing distortion is calculated to balance spring force, O-ring and groove friction, and asperity contact and hydrodynamic pressure at the interface. A control volume approach is used to track the oil over a cycle on the seals, the rotor and the housing as the seals are moving following the eccentric rotation of the rotor. The dominant cause of internal oil consumption is the non-conformability of the oil seals to the housing distortion generating net outward scraping, particularly next to the intake and exhaust port where the housing distortion valleys are deep and narrow.
Journal Article

Visualization of the Rotary Engine Oil Transport Mechanisms

2014-04-01
2014-01-1665
The rotary engine provides high power density compared to piston engine, but one of its downside is higher oil consumption. In order to better understand oil transport, a laser induced fluorescence technique is used to visualize oil motion on the side of the rotor during engine operation. Oil transport from both metered oil and internal oil is observed. Starting from inside, oil accumulates in the rotor land during inward motion of the rotor created by its eccentric motion. Oil seals are then scraping the oil outward due to seal-housing clearance asymmetry between inward and outward motion. Cut-off seal does not provide an additional barrier to internal oil consumption. Internal oil then mixes with metered oil brought to the side of the rotor by gas leakage. Oil is finally pushed outward by centrifugal force, passes the side seals, and is thrown off in the combustion chamber.
Journal Article

Design Drivers of Energy-Efficient Transport Aircraft

2011-10-18
2011-01-2495
The fuel energy consumption of subsonic air transportation is examined. The focus is on identification and quantification of fundamental engineering design tradeoffs which drive the design of subsonic tube and wing transport aircraft. The sensitivities of energy efficiency to recent and forecast technology developments are also examined.
Technical Paper

Mazda 4-Rotor Rotary Engine for the Le Mans 24-Hour Endurance Race

1992-02-01
920309
The “R26B” 4-rotor rotary engine is a powerplant that brought a Mazda racing car to victory in the 1991 Le Mans 24-hour endurance race. This engine was developed to achieve high levels of power output, fuel efficiency, and reliability, as required of endurance racing engines. This paper describes the basic structure of the engine, including a 3-piece eccentric shaft that represents a major technological achievement incorporated in the engine, as well as other technological innovations employed for the enhancement of the engine's power output and reliability, and for reducing its fuel consumption. These innovations include a telescopic intake manifold system, peripheral port injection, 3-plug ignition system, 2-piece ceramic apex seal, and a cermet coating on the rubbed surfaces of the housings.
Technical Paper

Combustion Characteristics in Hydrogen Fueled Rotary Engine

1992-02-01
920302
A hydrogen-fueled rotary engine was investigated with respect to the effects of the fuel supply method, spark plug rating and spark plug cavity volume on abnormal combustion. It was found that abnormal combustion was caused by pre-ignition from the spark plugs and gas leakage through the plug hole cavity. The hydrogen-fueled rotary engine could function through a wide operating range at a theoretical air-to-fuel ratio by optimising the above factors. Consequently, the hydrogen-fueled rotary engine achieved output power of up to 63%-75% of the gasoline specification, while the hydrogen-fueled reciprocating engine only reached 50%.
Technical Paper

Numerical Study of Aerodynamic Noise Radiated from a Three-Dimensional Wing

1992-02-01
920341
In this paper, a prediction method of the aerodynamic sound emitted from the three-dimensional delta wing of the attack angle at 15 degrees is presented. Computed flow Reynolds numbers range from 2.39x1 05 up to 9.56X 105. The method is based on the assumptions: flow Mach number is much less than unity and the strength of sound source equals Curle's dipole. These assumptions are validated by the experimental works performed in a quiet-flow-noise wind tunnel. Owing to the low Mach number condition, the computation region can be devided into two regions: inner flow region and outer wave region. The incompressible flow computation in the inner region is performed based on the full Navier-Stokes equations. The integration of the N-S equations are executed by using finite-difference method. For high Reynolds flow computation, the nonlinear convection terms are discretized by third-order upwind difference scheme.
Technical Paper

New Methodology of Life Cycle Assessment for Clean Energy Vehicle and New Car Model

2011-04-12
2011-01-0851
Mazda announced that all customers who purchase Mazda cars are provided with the joy of driving and excellent environmental and safety performance under slogan of "Sustainable Zoom-Zoom" long-term vision for technology development. The purpose of this study is to develop a new approach of Life Cycle Assessment (abbreviated to LCA) to be applied to clean energy vehicles and new car models. The improvement of both environmental performance, e.g., fuel consumption, exhaust emissions, vehicle weight reduction, and LCA that is a useful methodology to assess the environmental load of automobiles for their lifecycles has become more important. LCA by inventory analysis, for RX-8 Hydrogen RE as a rotary engine vehicle used hydrogen as clean energy, was carried out and disclosed the world for the first time. LCA for new Mazda 5 was carried out as the portfolio of all models, previously only the specific model equipped with fuel efficiency device based on ISO14040.
Technical Paper

A Study of a Direct-Injection Stratified-Charge Rotary Engine for Motor Vehicle Application

1993-03-01
930677
A study of a direct-injection stratified-charge system (DISC), as applied to a rotary engine (RE) for motor vehicle usage, was undertaken. The goals of this study were improved fuel consumption and reduced exhaust emissions. These goals were thought feasible due to the high thermal efficiency associated with the DISC-RE. This was the first application of this technology to a motor vehicle engine. Stable ignition and ideal stratification systems were developed by means of numerical calculations, air-fuel mixture measurements, and actual engine tests. The use of DISC resulted in significantly improved fuel consumption and reduced exhaust emissions. The use of an exhaust gas recirculating system was studied and found to be beneficial in NOx reduction.
Technical Paper

An Experimental Investigation on Air-Fuel Mixture Formation Inside a Low-Pressure Direct Injection Stratified Charge Rotary Engine

1993-03-01
930678
Stratified charge engines have been getting attention for the drastic improvement in thermal efficiency at low-load region. There have been researchers on the two types of engines-the high pressure direct injection stratified charge type in which fuel is supplied directly at high pressure into its combustion chamber right before ignition timings, and the low pressure direct injection stratified charge type in which fuel is injected directly into its cylinder while the cylinder pressure is comparatively low[ 1- 3]. Rotary engines have higher freedom than reciprocating engines in terms of equipping direct fuel injection devices, since their combustion chambers rotate along the rotor housing. The fuel supply units, therefore, need not be exposed to high temperature combustion gas.
Technical Paper

Sequential Twin Turbocharged Rotary Engine of the Latest RX-7

1994-03-01
941030
Many sports cars have recently appeared on the market, and people's interest in and requirements for the cars are continuing to grow. The RX-7 was developed to be a first-class sports car that Mazda can be proud of worldwide as a trend leader for sports cars in the '90s. Among many innovations, its engine is the fruit of all the efforts Mazda has done to realize a “pure RE sports car” that takes every advantage of the rotary engine. This paper describes the aim of the development, main specifications, performance characteristics and major new technologies of the engine.
Technical Paper

The Characteristics of Fuel Consumption and Exhaust Emissions of the Side Exhaust Port Rotary Engine

1995-02-01
950454
Mazda has been pursuing the research of side exhaust porting for its rotary engine in an effort to improve the engine's fuel efficiency and exhaust emissions characteristics. The side exhaust porting configuration provides greater flexibility in setting port timing and shape, as compared to the peripheral exhaust porting configuration, which is in use in the current-generation rotary engines; the side exhaust porting configuration enables the selection of a port timing more favorable to reduced fuel consumption and exhaust emissions. The side exhaust port rotary engine used in this research has its exhaust port closure timing around the top dead center (TDC) and has no intake-exhaust timing overlap. As a result, burnt gasses entering the next cycle of combustion are reduced, thus enhancing combustion stability; also, the air-fuel ratio can be set leaner for improved fuel consumption.
Technical Paper

Development of Disk Brake Rotor Utilizing Aluminum Metal Matrix Composite

1997-02-24
970787
Disk brake rotors require reduced unsprung weight and improved cooling ability for improved fade performance. Automotive brake rotors made from aluminum metal matrix composites (MMC) were evaluated by dynamometer and vehicle tests for the required improvement. The friction and wear performance and the thermal response during fade stops were compared with those of commercially produced gray cast iron (GCI) rotors. It was proved that MMC is a very effective material to replace GCI for brake rotor application, as it reduces unsprung weight and decreases maximum operation temperature of the brake system.
Technical Paper

Development of Sliding Surface Material for Combustion Chamber of High-Output Rotary Engine

1985-11-11
852176
The present trend of internal combustion engines toward higher-speed and higher-output capacity is pressing the need for improved lubrication of sliding parts in the combustion chamber to secure reliability. To meet this need, investigation into frictional phenomena was made with a rotary engine, which led to the development of a method of coating the inner surface of the rotor housing with fluorocarbon resin superior in self-lubrication and friction resistance. Rotary engines given this surface finishing showed no trace of irregular wear of the sliding surfaces even when subjected, prior to completion of run-in firing (in green condition), to high-speed and high-load tests, indicating this method's noteworthy benefit of improving comformability. This method offers an excellent surface finish for sliding parts of internal combustion engines (rotary and reciprocating) which will gain increasingly higher output in the future.
Technical Paper

Material Technology Development Applied to Rotary Engine at Mazda

1986-02-01
860560
New material and processing technologies were developed for main components of the rotary engine to establish its reliability and durability. The components discussed in this paper are the rotor housing, side housing, and sealing elements. Also described are the material and processing technologies which resolved problems about their strength, rigidity, wear, etc.
Technical Paper

Modeling of the Rotary Engine Apex Seal Lubrication

2015-09-01
2015-01-2035
The Wankel rotary engine is more compact than conventional piston engines, but its oil and fuel consumption must be reduced to satisfy emission standards and customer expectations. A key step toward this goal is to develop a better understanding of the apex seal lubrication to reduce oil injection while reducing friction and maintaining adequate wear. This paper presents an apex seal dynamics model capable of estimating relative wear and predicting friction, by modeling the gas and oil flows at the seal interfaces with the rotor housing and groove flanks. Model predictions show that a thin oil film can reduce wear and friction, but to a limited extent as the apex seal running face profile is sharp due to the engine kinematics.
X