Refine Your Search

Search Results

Technical Paper

Piston Fuel Film Observations in an Optical Access GDI Engine

A gasoline direct injection fuel spray was observed using a fired, optical access, square cross-section single cylinder research engine and high-speed video imaging. Spray interaction with the piston is described qualitatively, and the results are compared with Computational Fluid Dynamics (CFD) simulation results using KIVA-3V version 2. CFD simulations predicted that within the operating window for stratified charge operation, between 1% and 4% of the injected fuel would remain on the piston as a liquid film, dependent primarily on piston temperature. The experimental results support the CFD simulations qualitatively, but the amount of fuel film remaining on the piston appears to be under-predicted. High-speed video footage shows a vigorous spray impingement on the piston crown, resulting in vapor production.
Technical Paper

Liquid Fuel Visualization Using Laser-Induced Fluoresence During Cold Start

The presence of liquid fuel inside the engine cylinder is believed to be a strong contributor to the high levels of hydrocarbon emissions from spark ignition (SI) engines during the warm-up period. Quantifying and determining the fate of the liquid fuel that enters the cylinder is the first step in understanding the process of emissions formation. This work uses planar laser induced fluorescence (PLIF) to visualize the liquid fuel present in the cylinder. The fluorescing compounds in indolene, and mixtures of iso-octane with dopants of different boiling points (acetone and 3-pentanone) were used to trace the behavior of different volatility components. Images were taken of three different planes through the engine intersecting the intake valve region. A closed valve fuel injection strategy was used, as this is the strategy most commonly used in practice. Background subtraction and masking were both performed to reduce the effect of any spurious fluorescence.
Technical Paper

Development of the Stratified Charge and Stable Combustion Method in DI Gasoline Engines

The new combustion method in DISC engine has been developed. It has a double structure combustion chamber characterized as ‘Caldera’. The chamber is constructed by a center cavity for the purpose of forming a stable mixture around a spark plug electrode, and by an outer cavity which has a role of a main chamber. This method makes possible a perfect un-throttling operation, and a fuel consumption equal to a diesel engine is achieved. With regard to an out-put of DISC engine, a stoichmetric combustion and a high torque are achieved by controling a fuel injection timing with an electro-magnetic injection system device. With regard to emission regulations, a heavy EGR include residual gas decreases greatly NOx and HC emissions simultaneously, and which suggests a possibility to achieve LEV/ULEV regulations.
Technical Paper

Early Spray Development in Gasoline Direct-Injected Spark Ignition Engines

The characteristics of the early development of fuel sprays from pressure swirl atomizer injectors of the type used in direct injection gasoline engines is investigated. Planar laser-induced fluorescence (PLIF) was used to visualize the fuel distribution inside a firing optical engine. The early spray development of three different injectors at three different fuel pressures (3, 5, and 7 MPa) was followed as a function of time in 30 μsec intervals. Four phases could be identified: 1) A delay phase between the rising edge of the injection pulse and the first occurrence of fuel in the combustion chamber, 2) A solid jet or pre-spray phase, in which a poorly atomized stream of liquid fuel during the first 150 μsec of the injection. 3) A wide hollow cone phase, separation of the liquid jet into a hollow cone spray once sufficient tangential velocity has been established and 4) A fully developed spray, in which the spray cone angle is narrowed due to a low pressure zone at the center.
Technical Paper

The Effect of Operating Conditions at Idle in the S.I. Engine

A gasoline engine with an electronically controlled fuel injection system has substantially better fuel economy and lower emissions than a carburetted engine. In general, the stability of engine operation is improved with fuel injector, but the stability of engine operation at idle is not improved compared with a carburetted gasoline engine. In addition, the increase in time that an engine is at idle due to traffic congestion has an effect on the engine stability and vehicle reliability. Therefore, in this research, we will study the influence of fuel injection timing, spark timing, dwell angle, and air-fuel ratio on engine stability at idle.
Technical Paper

Visualization of Mixture Preparation in a Port-Fuel Injection Engine During Engine Warm-up

The fuel injection process in the port of a firing 4-valve SI engine at part load and 25°C head temperature was observed by a high speed video camera. Fuel was injected when the valve was closed. The reverse blow-down flow when the intake valve opens has been identified as an important factor in the mixture preparation process because it not only alters the thermal environment of the intake port, but also strip-atomizes the liquid film at the vicinity of the intake valve and carries the droplets away from the engine. In a series of “fuel-on” experiments, the fuel injected in the current cycle was observed to influence the fuel delivery to the engine in the subsequent cycles.
Technical Paper

Analysis in cyclic combustion Variation in a Lean Operating S.I. Engine

The causes of the cyclic combustion variation in a lean operating SI engine have been identified using multivariate analysis on the pressure-time data. Principal component analysis on the combustion characteristics obtained from the pressure-time data was conducted in order to select an index of an optimal released heat pattern for analyzing the causes of the cyclic combustion variation. Using this index and the released heat quantity, the IMEP variation was subjected to multiple regression analysis to identify the causes of the cyclic combustion variation. Optimizing the fuel injection timing and swirl ratio made it possible to enrich the mixture near the spark plug. With the lean limit thus extended, a SI engine was operated in a lean range, and the resultant pressure-time data were analyzed. It was found that the main cause of the IMEP variation in the lean operating SI engine was the released heat quantity variation.
Technical Paper

Fuel-Air Mixing and Diesel Combustion in a Rapid Compression Machine

The influence of charge motion and fuel injection characteristics on diesel combustion was studied in a rapid compression machine (RCM), a research apparatus that simulates the direct-injection diesel in-cylinder environment. An experimental data base was generated in which inlet air flow conditions (temperature, velocity, swirl level) and fuel injection pressure were independently varied. High-speed movies using both direct and shadowgraph photography were taken at selected operating conditions. Cylinder pressure data were analyzed using a one-zone heat release model to calculate ignition delay times, premixed and diffusion burning rates, and cumulative heat release profiles. The photographic analysis provided data on the liquid and vapor penetration rates, fuel-air mixing, ignition characteristics, and flame spreading rates.
Technical Paper

Heat Transfer Characteristics of Impinging Diesel Sprays

The heat transfer characteristics of impinging diesel sprays were studied in a Rapid Compression Machine. The temporal and spatial distributions of the heat transfer around the impingement point -were measured by an array of high frequency response surface thermocouples. Simultaneously, the flow field of the combusting spray was photographed with high speed movie through the transparent head of the apparatus. The results for the auto-ignited fuel sprays were compared to those of non-combusting sprays which were carried out in nitrogen. The values of the heat flux from the combusting sprays were found to be substantially different from those of the non-combusting sprays. The difference was attribute to the radiative heat transfer and the combustion generated bulk, motion and small scale turbulence.
Technical Paper

A Study of Exhaust and Noise Emissions Reduction on a Single Spray Direct Injection

Exhaust and noise emissions were successfully reduced using a Single Spray Direct Injection Diesel Engine (SSDI) on a two-liter naturally-aspirated four-cylinder engine. The compression ratio, the swirl ratio and the pumping rate were optimized to obtain good fuel economy, high power output and low exhaust emissions. Furthermore, through a modification of the fuel injection equipment, hydrocarbon (HC) emissions were reduced. Upon a test vehicle evaluation of this engine, more than 11% fuel savings relative to Mazda two-liter Indirect Injection Diesel Engines (IDI) were obtained. As for engine noise, structural modifications of the engine were carried out to obtain noise emission levels equivalent to IDI.
Technical Paper

An Experimental Investigation on Air-Fuel Mixture Formation Inside a Low-Pressure Direct Injection Stratified Charge Rotary Engine

Stratified charge engines have been getting attention for the drastic improvement in thermal efficiency at low-load region. There have been researchers on the two types of engines-the high pressure direct injection stratified charge type in which fuel is supplied directly at high pressure into its combustion chamber right before ignition timings, and the low pressure direct injection stratified charge type in which fuel is injected directly into its cylinder while the cylinder pressure is comparatively low[ 1- 3]. Rotary engines have higher freedom than reciprocating engines in terms of equipping direct fuel injection devices, since their combustion chambers rotate along the rotor housing. The fuel supply units, therefore, need not be exposed to high temperature combustion gas.
Technical Paper

Mixture Preparation in a SI Engine with Port Fuel Injection During Starting and Warm-Up

The in-cylinder hydrocarbon (HC) mole fraction was measured on a cycle-resolved basis during simulated starting and warm-up of a port-injected single-cylinder SI research engine on a dynamometer. The measurements were made with a fast-response flame ionization detector with a heated sample line. The primary parameters that influence how rapidly a combustible mixture builds up in the cylinder are the inlet pressure and the amount of fuel injected; engine speed and fuel injection schedule have smaller effects. When a significant amount of liquid fuel is present at the intake port in the starting process, the first substantial firing cycle is often preceded by a cycle with abnormally high in-cylinder HC and low compression pressure. An energy balance analysis suggests that a large amount of liquid vaporization occurs within the cylinder in this cycle.
Technical Paper

Photographic and Performance Studies of Diesel Combustion With a Rapid Compression Machine

Photographic and performance studies with a Rapid Compression Machine at the Massachusetts Institute of Technology have been used to develop insight into the role of mixing in diesel engine combustion. Combustion photographs and performance data were analyzed. The experiments simulate a single fuel spray in an open chamber diesel engine with direct injection. The effects of droplet formation and evaporation on mixing are examined. It is concluded that mixing is controlled by the rate of entrainment of air by the fuel spray rather than the dynamics of single droplets. Experimental data on the geometry of a jet in a quiescent combustion chamber were compared with a two-phase jet model; a jet model based on empirical turbulent entrainment coefficients was developed to predict the motion of a fuel jet in a combustion chamber with swirl. Good agreement between theory and experiment was obtained.
Technical Paper

A Performance Model for the Texaco Controlled Combustion, Stratified Charge Engine

A model has been developed to predict the performance of the Texaco Controlled Combustion, Stratified Charge Engine starting from engine geometry, fuel characteristics and the operating conditions. This performance model divides the engine cycle into the following phases: Intake, Compression, Rapid Combustion, Mixing-Dominated Expansion, Heat-Transfer Dominated Expansion and Exhaust. During the rapid combustion phase, the rate of heat release is assumed to be controlled by the rate of fuel injection and the air-to-fuel ratio. The burning rate in the mixing controlled stage appears to be dominated by the rate of entrainment of the surrounding gas by the plume of burning products and this rate is assumed to be controlled by the turbulent eddy entrainment velocity. A plume geometry model has been developed to obtain the surface area of the plume for entrainment during the mixing dominated phase.
Technical Paper

Development of Low Particulate Engine with Ceramic Swirl Chamber

An all-ceramic swirl chamber has been developed which meets the 1987 U.S. particulate emission standard for LDV. The all ceramic construction raises combustion temperature to reduce particulate emission to the necessary level. But particulate reduction led to two-fold increase in NOx. This problem was coped with by applying EGR and fuel injection timing control. As a result NOx has been cut to the same level as with a base engine and particulate has been further reduced.
Technical Paper

A Comparative Study on Different Dual-Fuel Combustion Modes Fuelled with Gasoline and Diesel

Comparisons have been made between dual-fuel (80% port-injection gasoline and 20% direct-injection diesel by mass) Highly Premixed Charge Combustion (HPCC) and blended-fuel (80% gasoline and 20% diesel) Low Temperature Combustion (LTC) modes on a 1-L single-cylinder test engine. In the HPCC mode, both early-injection (E-HPCC) and late-injection (L-HPCC) of diesel have been used. The comparisons have been conducted with a fixed fuel injection rate of 50 mg/cycle at 1500 rpm, and with the combustion phasing fixed (by adjusting the injection timing) so that the 50% heat release point (CA50) is at 8° ATDC. The rapid heat release process of LTC leads to the highest maximum pressure rise rate (MPRR). A two-peak heat release process is observed in L-HPCC, resulting in a lower MPRR. The heat release rate and MPRR values for the E-HPCC are comparable to the L-HPCC values. The EHPCC mode provides the lowest NOX emission. The soot emissions for all three modes are low.
Technical Paper

Fuel Effects on HCCI Operation in a Spark Assisted Direct Injection Gasoline Engine

The fuel effects on HCCI operation in a spark assisted direct injection gasoline engine are assessed. The low load limit has been extended with a pilot fuel injection during the negative valve overlap (NVO) period. The fuel matrix consists of hydrocarbon fuels and various ethanol blends and a butanol blend, plus fuels with added ignition improvers. The hydrocarbon fuels and the butanol blend do not significantly alter the high or the low limits of operation. The HCCI operation appears to be controlled more by the thermal environment than by the fuel properties. For E85, the engine behavior depends on the extent that the heat release from the pilot injected fuel in the NVO period compensates for the evaporative cooling of the fuel.
Technical Paper

Fuel Spray Combustion of Waste Cooking Oil and Palm Oil Biodiesel: Direct Photography and Detailed Chemical Kinetics

This paper studies the ignition processes of two biodiesel from two different feedstock sources, namely waste cooked oil (WCO) and palm oil (PO). They were investigated using the direct photography through high-speed video observations and detailed chemical kinetics. The detailed chemical kinetics modeling was carried out to complement data acquired using the high-speed video observations. For the high-speed video observations, an image intensifier combined with OH* filter connected to a high-speed video camera was used to obtain OH* chemiluminscence image near 313 nm. The OH* images were used to obtain the experimental ignition delay of the biodiesel fuels. For the high-speed video observations, experiments were done at an injection pressure of 100, 200 and 300 MPa using a 0.16 mm injector nozzle.
Technical Paper

Particulate Matter Emission During Start-up and Transient Operation of a Spark-Ignition Engine

In order to understand why emissions of Particulate Matter (PM) from Spark-Ignition (SI) automobiles peak during periods of transient operation such as rapid accelerations, a study of controlled, repeatable transients was performed. Time-resolved engine-out PM emissions from a modern four-cylinder engine during transient load and air/fuel ratio operation were examined, and the results could be fit in most cases to a first order time response. The time constants for the transient response are similar to those measured for changes in intake valve temperature, reflecting the strong dependence of PM emissions on the amount of liquid fuel in the combustion chamber. In only one unrepeatable case did the time response differ from a first order function: showing an overshoot in PM emissions during transition from the initial to the final steady state PM emission level.
Technical Paper

Numerical Modeling of Fuel Sprays in DISI Engines Under Early-Injection Operating Conditions

Numerical calculations of the fuel spray structure from a high-pressure swirl injector were used to enable the interpretation of experimental observations obtained in hot, hollow-cone fuel sprays issued into sub-atmospheric-pressure environments. The experiments show that the spray becomes narrower, more compact, but with a relatively long penetration depth. Model input parameters, including the droplet size distribution, early vapor production, and initial cone angle, were modified to determine which spray characteristics are important in recreating observed spray structures. A very small mean droplet diameter is needed to recreate the experimentally observed structure of the high-temperature, low-pressure sprays. Vapor addition to the emerging spray is then required to increase the axial penetration and provide the observed vapor core.