Refine Your Search

Topic

Author

Search Results

Technical Paper

Inverse Method for Measuring Weld Temperatures during Resistance Spot Welding

2001-03-05
2001-01-0437
A new monitoring system predicts the progression of welding temperature fields during resistance spot welding. The system captures welding voltages and currents to predict contact diameters and simulate temperature fields. The system accurately predicts fusion lines and heat-affected zones. Accuracy holds even for electrode tips used for a few thousand welds of zinc coated steels.
Technical Paper

Space Life Support from the Cellular Perspective

2001-07-09
2001-01-2229
Determining the fundamental role of gravity in vital biological systems in space is one of six science and research areas that provides the philosophical underpinning for why NASA exists. The study of cells, tissues, and microorganisms in a spaceflight environment holds the promise of answering multiple intriguing questions about how gravity affects living systems. To enable these studies, specimens must be maintained in an environment similar to that used in a laboratory. Cell culture studies under normal laboratory conditions involve maintaining a highly specialized environment with the necessary temperature, humidity control, nutrient, and gas exchange conditions. These same cell life support conditions must be provided by the International Space Station (ISS) Cell Culture Unit (CCU) in the unique environment of space. The CCU is a perfusion-based system that must function in microgravity, at unit gravity (1g) on earth, and from 0.1g up to 2g aboard the ISS centrifuge rotor.
Technical Paper

Chain Representations of Dimensional Control: A Producibility Input for Concurrent Concept Design

1998-06-02
981846
Two critical milestones that must be achieved during concept design are 1) definition of a product architecture that meets performance, producibility, and strategic objectives, and 2) estimation of the integration risk in each candidate concept. This paper addresses these issues by describing the role played by the producibility members of an Integrated Product Team (IPT) during concept design. Our focus is on the execution of the what we call the “chain method”, which illustrates the structure of function delivery in a concept in a simple pictorial way and helps the IPT to understand the advantages or disadvantages of using a modular or an integral product architecture. The producibility members play a central role in capturing and evaluating the chains for different candidate concepts and decompositions.
Technical Paper

Development of Magnesium Forged Wheel

1995-02-01
950422
Magnesium has the lowest specific gravity of all metals used for structural members. The application of magnesium for a road wheel leads to improved vehicle handling and drivability because of the reduction of an unsprung weight. The authors have developed new magnesium alloy which shows excellent mechanical properties and attained a magnesium forged road wheel that is 30% lighter than aluminum wheels.
Technical Paper

Cost Awareness in Design: The Role of Data Commonality

1996-02-01
960008
Enhanced information management techniques made available through emerging Information Technology platforms hold a promise of providing significant improvements in both the effectiveness and efficiency of developing complex products. Determining actual management implementations that deliver on this promise has often proven elusive. Work in conjunction with the Lean Aircraft Initiative at MIT has revealed a straight forward use of Information Technology that portends significant cost reductions. By integrating previously separate types of data involved in the process of product development, engineers and designers can make decisions that will significantly reduce ultimate costs. Since the results presented are not specific to particular technologies or manufacturing processes, the conclusions are broadly applicable.
Technical Paper

A Study of Cycle-to-Cycle Variations in SI Engines Using a Modified Quasi-Dimensional Model

1996-05-01
961187
This paper describes the use of a modified quasi-dimensional spark-ignition engine simulation code to predict the extent of cycle-to-cycle variations in combustion. The modifications primarily relate to the combustion model and include the following: 1. A flame kernel model was developed and implemented to avoid choosing the initial flame size and temperature arbitrarily. 2. Instead of the usual assumption of the flame being spherical, ellipsoidal flame shapes are permitted in the model when the gas velocity in the vicinity of the spark plug during kernel development is high. Changes in flame shape influence the flame front area and the interaction of the enflamed volume with the combustion chamber walls. 3. The flame center shifts due to convection by the gas flow in the cylinder. This influences the flame front area through the interaction between the enflamed volume and the combustion chamber walls. 4. Turbulence intensity is not uniform in cylinder, and varies cycle-to-cycle.
Technical Paper

Aggregate Vehicle Emission Estimates for Evaluating Control Strategies

1994-03-01
940303
Currently, states that are out of compliance with the National Ambient Air Quality Standards must, according to the Clean Air Act Amendments of 1990 (CAAA), develop and implement control strategies that demonstrate specific degrees of reduction in emissions-with the degree of reduction depending upon the severity of the problem. One tool that has been developed to aid regulators in both deciding an appropriate course of action and to demonstrate the desired reductions in mobile emissions is EPA's Mobile 5a emission estimation model. In our study, Mobile 5a has been used to examine the effects of regulatory strategies, as applied to the Northeast United States, on vehicle emissions under worst-case ozone-forming conditions.
Technical Paper

Development of Lighter-Weight, Higher-Stiffness Body for New RX-7

1992-02-01
920244
To realize high levels of handling, driving performance, and NVH characteristics for a sports car, it is important to develop a lightweight and high-stiffness vehicle body. For the new RX-7, weight saving and higher stiffness were pursued as top priorities from the very first stage of the program. We were able to achieve 20% higher bending stiffness and 15% higher torsional stiffness with vehicle weight reduced by 30 kg, compared with the former model. The development of the lightweight, high-stiffness body for the new RX-7 is discussed under three subjects: 1. Contributions of vehicle components to vehicle stiffness 2. Effective procedure for developing vehicle high stiffness and lightweight construction with emphasis on calculation analysis 3. New RX-7's body structure and accomplishment
Technical Paper

Application of Vibration Damping Steel Sheet for Autobody Structural Parts

1992-02-01
920249
As a demand for vehicles of higher functionality grows, automakers and material suppliers are devoting increasing efforts to develop technologies for greater safety, lighter weight, higher corrosion resistance, and enhanced quietness. The resin-sandwiched vibration damping steel sheet (VDSS), developed as a highly functional material for reducing vehicle vibration and noise, has been used for oil pans1) and compartment partitions2). First applied for a structural dash panel of the new Mazda 929, a Zn-Ni electroplated VDSS which allows direct electric welding has contributed to greater weight reduction as well as improved quietness.
Technical Paper

Decoupled Design of Cylinder Liner for IC Engines

1991-11-01
911231
Concept of a new decoupled cylinder liner design for internal combustion (IC) engines is presented from the framework of axiomatic design to improve friction and wear characteristics. In the current design, the piston rings fail to satisfy their functional requirements at the two dead centers of the piston stroke where lubrication is poor. It is proposed that by using undulated cylindrical surfaces selectively along the cylinder liner, much of the existing friction and wear problems of IC engines may be solved. The main idea behind undulated surface is to trap wear particles at the piston-cylinder interface in order to minimize plowing, and thus maintain low friction even in areas where lubrication fails to be hydrodynamic. In dry sliding tests using a modified engine motored at low speeds, undulated cylinders operated for significantly longer time than smooth cylinders without catastrophic increase in friction.
Technical Paper

Application of Aluminum Honeycomb Sandwiches and Extrusions in a Convertible: Part 1: Design and Performance of a Prototype

1987-02-01
870147
Aluminum Honeycomb Sandwiches and Extrusions have been applied to a platform for convertibles. The platform, composed of a dashpanel and floor panels (honeycomb sandwiches) and a framework (extrusions), has a much more lightweight and rigid structure than other conventional convertible bodies-in-white. This improves remarkably vibrational behavior and handling characteristics, which deteriorate in a convertible, in the case of a prototype.
Technical Paper

Parametric Analysis of Resistance Spot Welding Lobe Curve

1988-02-01
880278
A linearized lumped parameter heat balance model was developed and is discussed for the general case of resistance welding to see the effects of each parameter on the lobe shape. The parameters include material properties, geometry of electrodes and work piece, weld time and current, and electrical and thermal contact characteristics. These are then related to heat dissipation in the electrodes and the work piece. The results indicate that the ratio of thermal conductivity and heat capacity to electrical resistivity is a characteristic number which is representative of the ease of spot weldability of a given material. The increases in thermal conductivity and heat capacity of the sheet metal increase the lobe width while increases in electrical resistivity decrease the lobe width. Inconsistencies in the weldability of thin sheets and the wider lobe width at long welding times can both be explained by the heat dissipation characteristics.
Technical Paper

Computational Study of the Aerodynamic Behavior of a Three-Dimensional Car Configuration

1989-02-01
890598
Three-dimensional flows around a car configuration, a Mazda RX-7, were computed by directly integrating the governing unsteady, incompressible Navier-Stokes equations. A well-established finite-difference procedure was utilized. The basic equations were formulated in a generalized coordinate system. A third-order upwind scheme was applied to discretize the equations, and the numerical solutions were acquired without using any explicit turbulence models. Elaborate numerical results were presented at a high Reynolds number, Re=106 (based on the body length). In order to investigate the influence of the cross wind, computations were carried out for two yaw angles, i.e., 0 degree and 30 degrees. Extensive flow visualizations, using state-of-the-art computer graphics, were performed; details of the three-dimensional flow structure were examined. Well-controlled wind tunnel experiments were also conducted.
Technical Paper

The Corrosion Resistance of Organic Composite-Coated Steel Sheets

1993-10-01
932365
In order to investigate the corrosion resistance of organic composite-coated steel sheets ( OCS ) in a real automotive environment, many kinds of corrosion tests were performed on test pieces and real automotive doors. Tests with a corrosive solution including iron rust were introduced to simulate the real corrosive environment of automotive doors. The relationship between the components of OCS and the corrosion resistance in the rust-including tests was examined. In addition, electrochemical studies were performed. Results indicate OCS has much better corrosion resistance than plated steel sheets with heavier coating weight in all tests. OCS shows excellent corrosion resistance in rust-free corrosive solution, however, some types of OCS do have corrosion concerns in rust-including tests. It became clear that these OCS types have an organic coating with lower cross-linking.
Technical Paper

Development of Simultaneous Zinc Phosphating Process for Aluminum and Steel Plates

1993-11-01
931936
A method was studied for simultaneous zinc phosphating on aluminum and steel surfaces to obtain high corrosion resistance on aluminum surfaces, which conventional phosphatic processing could not provide with sufficient corrosion resistance. Since aluminum is protected by an oxide film on its surface, it has poor processability with zinc phosphating solutions applied to steel. An appropriate quantity of fluoride was therefore added to improve processing, and the coating film, aluminum composition and surface conditions were optimized to suppress filiform corrosion, which is characterized by string-like blisters of paint film starting from a paint defect. In addition, in view of the actual production environment, the corrosion resistance of the ground area made for readjustment after stamping was studied for the optimization of the processing solution.
Technical Paper

Complete Ceramic Swirl Chamber for Passenger Car Diesel Engine

1987-02-01
870650
The U.S. Federal Emission Standards ruled that particulate emissions from '87 models should be no more than 0.20 g/mile for passenger cars and 0.26 g/mile for light-duty trucks. A complete ceramic swirl chamber with a heat insulating air gap has been developed to meet the above standards without sacrificing fuel economy or power output. The whole process by which the ceramic swirl chamber was developed will be described: optimization of materials, design, manufacturing, and the method and system of quality control. The results of long term durability tests will be described, which demonstrate the chamber's excellent reliability.
Technical Paper

Influence of Geometry of Rear part on the Aerodynamic Drag and Wake Structure of a Vehicle

1987-11-08
871236
The substantial part of the drag of an automobile is the pressure drag. Therefore, the car must be designed as it produces minimum pressure drag. The present paper describes effects of geometrical configuration of the rear part of a car on the aerodynamic drag. Experiments were made on 1/5 scale models of fastback and notchback design. For the fastback car the drag depends heavily on the angle of a rear window. At a certain critical angle the drag shows a sharp peak. This peak drag can be reduced drastically by the tapering of plan form of the rear geometry. For the notch-back design some combination of the angle of rear window and height of trunk deck shows similar maximum in the drag. Methods of avoiding the large drag were also found. Our experiment was extended to the measurement of structure of wake by hot wire anemometers and total pressure tubes. The correlation between the wake structure and drag was clarified by the consideration of vorticity and circulation.
Technical Paper

A Study About In-Cylinder Flow and Combustion in a 4-Valve S.I. Engine

1992-02-01
920574
Lean-burn technology is now being reviewed again in view of demands for higher efficiency and cleanness in internal combustion engines. The improvement of combustion using in-cylinder gas flow control is the fundamental technology for establishing lean-burn technology, but the great increase in main combustion velocity due to intensifying of turbulence causes a deterioration in performance such as increase in heat loss and N0x. Thus, it is desirable to improve combustion stability while suppressing the increase in main burn velocity as much as possible (1). It is expected that the fluid characteristics of the in-cylinder tumbling motion that the generated vortices during intake stroke breake down in end-half of compression stroke will satisfy the above requisition. This study is concerned with the effects of enhancing of tumble intensity on combustion in 4-valve S. I. engines.
Technical Paper

Mazda New Lightweight and Compact V6 Engines

1992-02-01
920677
Mazda has developed new-generation V6 engines. The new V6 series comprises 2.5-litre, 2.0-litre and 1.8-litre engines. The development objective was to ensure high output performance for excellent “acceleration and top-end feel”, while satisfying “Clean & Economy” requirements. The engines also had to have a pleasant sound. Mazda selected for these engines a short stroke, 60° V-shaped 24 valve DOHC with an aluminum cylinder block. Various techniques are adopted as follows: Combustion improvement and optimization of control to achieve high fuel economy and low emissions Improvement of volumetric efficiency, inertia reduction of rotating parts and optimization of control to achieve excellent “acceleration and top-end feel” Adoption of a high-rigidity, two-piece cylinder block and crankshaft and weight reduction of reciprocating parts to achieve a pleasant engine sound Material changes and elimination of dead space to achieve a compact, lightweight engine
Technical Paper

A Graphical Workstation Based Part-Task Flight Simulator for Preliminary Rapid Evaluation of Advanced Displays

1992-10-01
921953
Advances in avionics and display technology are significantly changing the cockpit environment in current transport aircraft. The MIT Aeronautical Systems Lab (ASL) has developed a part-task flight simulator specifically to study the effects of these new technologies on flight crew situational awareness and performance. The simulator is based on a commercially-available graphics workstation, and can be rapidly reconfigured to meet the varying demands of experimental studies. The simulator has been successfully used to evaluate graphical microburst alerting displays, electronic instrument approach plates, terrain awareness and alerting displays, and ATC routing amendment delivery through digital datalinks.
X