Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

Detection of Transient Noise of Car Interior Using Non-stationary Signal Analysis

1998-02-23
980589
A method to inspect the rattle generated in a vehicle cabin has been developed. In the method, the waveform of overall in-cabin noise is analyzed using Wigner distribution, a kind of time-frequency analysis, and the rattle component of the waveform is condensed and separated from the background shake noise. Then the rattle component is classified into three levels, strong, middle and not detected, using a neural network. Fuzzy inference is also used to select normal waveform data. Experimental results show that the correct classification ratio of the method is more than 90%, which equals the ability of skilled inspectors.
Technical Paper

Development of Lighter-Weight, Higher-Stiffness Body for New RX-7

1992-02-01
920244
To realize high levels of handling, driving performance, and NVH characteristics for a sports car, it is important to develop a lightweight and high-stiffness vehicle body. For the new RX-7, weight saving and higher stiffness were pursued as top priorities from the very first stage of the program. We were able to achieve 20% higher bending stiffness and 15% higher torsional stiffness with vehicle weight reduced by 30 kg, compared with the former model. The development of the lightweight, high-stiffness body for the new RX-7 is discussed under three subjects: 1. Contributions of vehicle components to vehicle stiffness 2. Effective procedure for developing vehicle high stiffness and lightweight construction with emphasis on calculation analysis 3. New RX-7's body structure and accomplishment
Technical Paper

Application of Vibration Damping Steel Sheet for Autobody Structural Parts

1992-02-01
920249
As a demand for vehicles of higher functionality grows, automakers and material suppliers are devoting increasing efforts to develop technologies for greater safety, lighter weight, higher corrosion resistance, and enhanced quietness. The resin-sandwiched vibration damping steel sheet (VDSS), developed as a highly functional material for reducing vehicle vibration and noise, has been used for oil pans1) and compartment partitions2). First applied for a structural dash panel of the new Mazda 929, a Zn-Ni electroplated VDSS which allows direct electric welding has contributed to greater weight reduction as well as improved quietness.
Technical Paper

Diagnosis and Objective Evaluation of Gear Rattle

1991-05-01
911082
The objectives of this work were to establish a method to diagnose the source of gear rattle and to evaluate the rattle objectively. The methods are described in detail, applied to two passenger cars as an example. Investigations were conducted into transmission rattle under transient conditions. By analysing the transmission casing vibration with respect to the engine flywheel angle, and presenting the data in the form of contour maps, it was shown that the two vehicles had different characteristics of gear impacts. Further measurements of the angular motion of each gear revealed the impact conditions at the input mesh in the transmission largely controlled the character of the rattle and were fundamentally different between the two vehicles. A rattle index was developed, based on the casing vibration under transient driving conditions.
Technical Paper

A Study of Exhaust and Noise Emissions Reduction on a Single Spray Direct Injection

1989-02-01
890467
Exhaust and noise emissions were successfully reduced using a Single Spray Direct Injection Diesel Engine (SSDI) on a two-liter naturally-aspirated four-cylinder engine. The compression ratio, the swirl ratio and the pumping rate were optimized to obtain good fuel economy, high power output and low exhaust emissions. Furthermore, through a modification of the fuel injection equipment, hydrocarbon (HC) emissions were reduced. Upon a test vehicle evaluation of this engine, more than 11% fuel savings relative to Mazda two-liter Indirect Injection Diesel Engines (IDI) were obtained. As for engine noise, structural modifications of the engine were carried out to obtain noise emission levels equivalent to IDI.
Technical Paper

Estimation Method for Automobile Aerodynamic Noise

1992-02-01
920205
Cost and weight reduction considerations make it very important to evaluate and reduce aerodynamic noise in the early stage of vehicle develpment. For these reasons, a method to evaluate aerodynamic noise quantitatively is needed. As an initial step, our first paper investigated airflow around the A-pillar of a full-scale vehicle. As a result, vortical flow structure and the influence of the vortical flow on the pressure fluctuations were clarified. As the second step, this paper presents an estimation method for the aerodynamic noise from a vehicle. Based on Lighthill's equation, we propose an evaluation equation to estimate aerodynamic noise. The aerodynamic noise radiated externally from a vehicle is estimated as ∑(Pfi,fi,Sfi)2 Where Pfi is the fluctuating pressure on the surface of the vehicle, fi the frequency and Sfi the correlation area. The method is applied to the aerodynamic noise problem associated with the A-pillar of a vehicle.
Technical Paper

Analysis of the Sound Field in an Automobile Cabin by using the Boundary Element Method

1989-05-01
891153
A method of analyzing the three-dimensional sound field in a full-size automobile cabin was studied. The acoustic resonant frequency and the acoustic mode of the cabin were calculated by using the boundary element method (BEM), and were then compared with an experiment conducted on a full-size cabin model made of plaster. The calculated resonant frequencies agreed with measured ones to within about 3% below 170 Hz, and the calculated modes and frequency response curves were in good agreement with experiments when the cabin wall was rigid. In the case of a wall partially lined with absorbing materials, the calculated resonant frequency and the damping ratio were approximately the same as the experimental ones. From these studies, it is concluded that the BEM is useful for analyzing the sound field in a full-size automobile cabin.
Technical Paper

The Anatomy of Knock

2016-04-05
2016-01-0704
The combustion process after auto-ignition is investigated. Depending on the non-uniformity of the end gas, auto-ignition could initiate a flame, produce pressure waves that excite the engine structure (acoustic knock), or result in detonation (normal or developing). For the “acoustic knock” mode, a knock intensity (KI) is defined as the pressure oscillation amplitude. The KI values over different cycles under a fixed operating condition are observed to have a log-normal distribution. When the operating condition is changed (over different values of λ, EGR, and spark timing), the mean (μ) of log (KI/GIMEP) decreases linearly with the correlation-based ignition delay calculated using the knock-point end gas condition of the mean cycle. The standard deviation σ of log(KI/GIMEP) is approximately a constant, at 0.63. The values of μ and σ thus allow a statistical description of knock from the deterministic calculation of the ignition delay using the mean cycle properties
Technical Paper

Balancing Design Functional Coupling and Sensitivity to Noise to Achieve the Design Target

2007-04-16
2007-01-1207
The primary objective in design is to achieve the target value of the design's response function. If a design fails to achieve the target value, it most likely fails in two ways: inconsistent functional output and in design involving multiple response functions, unable to converge to the multiple target values in spite of iterative adjustment of the design parameters. The former is symptom of a design not able to perform in the presence of variability, i.e., noise. The latter is symptom of a design that fails to perform in the presence of functional coupling. Both problems are best addressed at the conceptual stage of the design at which only design solution that is inherently robust to noise and functionally uncoupled is entertained. If this is not possible, the alternative is to exploit the interaction between control variables and variables that are sources of noise and functional coupling to render the design insensitive to them.
Technical Paper

Vibration Measurement in Flight

1937-01-01
370175
EQUIPMENT for measuring vibration in airplane structures and powerplants during actual flight is described in this paper. This development is the result of a cooperative research program carried out by the Bureau of Aeronautics of the U. S. Navy and the Massachusetts Institute of Technology with contributions of improvements in design and new features by the Sperry Gyroscope Co., Inc. In its essentials, the M.I.T.-Sperry Apparatus consists of a number of electrical pickup units which operate a central amplifying and recording unit. The recorder is a double-element photographic oscillograph. Each pickup is adapted especially to the type of vibration that it is intended to measure and is made so small that it does not appreciably affect the vibration characteristics of the member to which it is attached rigidly. By using a number of systematically placed pickups, all the necessary vibration information on an airplane can be recorded during a few short flights.
Journal Article

Diesel Combustion Noise Reduction by Controlling Piston Vibration

2015-04-14
2015-01-1667
It has been required recently that diesel engines for passenger cars meet various requirements, such as low noise, low fuel consumption, low emissions and high power. The key to improve the noise is to reduce a combustion noise known as “Diesel knock noise”. Conventional approaches to reduce the diesel knock are decreasing combustion excitation force due to pilot/pre fuel injection, adding ribs to engine blocks or improving noise transfer characteristics by using insulation covers. However, these approaches have negative effects, such as deterioration in fuel economy and increase in cost/weight. Therefore, modification of engine structures is required to reduce it. We analyzed noise transfer paths from a piston, a connecting rod, a crank shaft to an engine block and vibration behavior during engine operation experimentally, and identified that piston resonance was a noise source.
X