Refine Your Search

Topic

Search Results

Journal Article

Visualization of the Rotary Engine Oil Transport Mechanisms

2014-04-01
2014-01-1665
The rotary engine provides high power density compared to piston engine, but one of its downside is higher oil consumption. In order to better understand oil transport, a laser induced fluorescence technique is used to visualize oil motion on the side of the rotor during engine operation. Oil transport from both metered oil and internal oil is observed. Starting from inside, oil accumulates in the rotor land during inward motion of the rotor created by its eccentric motion. Oil seals are then scraping the oil outward due to seal-housing clearance asymmetry between inward and outward motion. Cut-off seal does not provide an additional barrier to internal oil consumption. Internal oil then mixes with metered oil brought to the side of the rotor by gas leakage. Oil is finally pushed outward by centrifugal force, passes the side seals, and is thrown off in the combustion chamber.
Journal Article

Conceptual Modeling of Complex Systems via Object Process Methodology

2009-04-20
2009-01-0524
Knowledge mapping is a first and mandatory step in creation of system architecture. This paper considers the conceptual modeling of automotive systems, and discusses the creation of a knowledge-based model with respect to the Object Process Methodology an approach used in designing intelligent systems by depicting them using object models and process models. With this knowledge, systems engineer should consider what a product is comprised of (its structure), how it operates (its dynamics), and how it interacts with the environment. As systems have become more complex, a prevalent problem in systems development has been the number of accruing errors. A clearly defined and consistent mapping of knowledge regarding structure, operation and interaction is necessary to construct an effective and useful system. An interactive, iterative and consistent method is needed to cope with this complex and circular problem.
Journal Article

A Study on Design Factors of Gas Pedal Operation

2012-04-16
2012-01-0073
Lateral distance from the center of a driver's seating position to the gas and brake pedals is one of the main design factors that relates to the ease of stepping on the pedals from one and the other. It is important to keep a certain distance between the pedals to prevent erroneous operations or to reduce the driver's anxiety. In this paper, we explain that the distance between the pedals is affected by the driver's seating height. In other words, if the driver sits lower, the accuracy of stepping on the pedals from the gas pedal to the brake pedal will increase compared to the higher seating position. In addition, we found out that providing auxiliary parts for the leg support enhances the accuracy of the pedal operations.
Technical Paper

The Driving Simulator with Large Amplitude Motion System

1991-02-01
910113
An Advanced driving simulator has been developed at Mazda Yokohama Research Center. The primary use of this simulator is to research future driver-vehicle systems. In an emergency situation, a driver must respond rapidly to perceived motion and visual stimulus to avoid an accident. In such cases, because the time delay associated with the perception of motion cues is shorter than visual and auditory cues, the driver will strongly rely upon perceived motion to control the vehicle. Hence, a driving simulator to be used in the research of driver-vehicle interactions in emergency driving must include a high performance motion system capable of large amplitude lateral motion. The Mazda simulator produces motion cues in four degrees of freedom, provides visual and auditory cues, and generates control feel on the steering wheel. This paper describes the merit of the large amplitude motion system and the features of this newly developed driving simulator.
Journal Article

Design Drivers of Energy-Efficient Transport Aircraft

2011-10-18
2011-01-2495
The fuel energy consumption of subsonic air transportation is examined. The focus is on identification and quantification of fundamental engineering design tradeoffs which drive the design of subsonic tube and wing transport aircraft. The sensitivities of energy efficiency to recent and forecast technology developments are also examined.
Technical Paper

Comparative Analysis of Automotive Powertrain Choices for the Next 25 Years

2007-04-16
2007-01-1605
This paper assesses the potential improvement of automotive powertrain technologies 25 years into the future. The powertrain types assessed include naturally-aspirated gasoline engines, turbocharged gasoline engines, diesel engines, gasoline-electric hybrids, and various advanced transmissions. Advancements in aerodynamics, vehicle weight reduction and tire rolling friction are also taken into account. The objective of the comparison is the potential of anticipated improvements in these powertrain technologies for reducing petroleum consumption and greenhouse gas emissions at the same level of performance as current vehicles in the U.S.A. The fuel consumption and performance of future vehicles was estimated using a combination of scaling laws and detailed vehicle simulations. The results indicate that there is significant potential for reduction of fuel consumption for all the powertrains examined.
Technical Paper

Development of a Technique to Strengthen Body Frame with Structural Foam

2001-03-05
2001-01-0313
A technique to strengthen body frame with a polymeric structural foam has been developed with benefits of reducing vehicle weight and improving drivability and fuel economy. The idea of this new technology was evolved from the concept that body frame strength will increase drastically if the body frames are prevented from folding on collision. The energy of a collision impact would be effectively absorbed if weak portions of body frames are reinforced by a high strength structural foam. The new technology composed of the high strength structural foam and a light-weight frame structure with partial foam filling is reported here.
Technical Paper

Axiomatic Design of Automobile Suspension and Steering Systems: Proposal for a Novel Six-Bar Suspension

2004-03-08
2004-01-0811
The existing vehicle designs exhibit a high level of coupling. For instance the coupling in the suspension and steering systems manifests itself through the change in wheel alignment parameters (WAP) due to suspension travel. This change in the WAP causes directional instability and tire-wear. The approach of the industry to solve this problem has been twofold. The first approach has been optimization of suspension link lengths to reduce the change in WAP to zero. Since this is not possible with the existing architecture, the solution used is the optimization of the spring stiffness K to get a compromise solution for comfort (which requires significant suspension travel and hence a soft spring) and directional stability (which demands least possible change in wheel alignment parameters and hence a stiff spring).
Technical Paper

Application of Plasma Welding to Tailor- Welded Blanks

2003-10-27
2003-01-2860
In recent years, improving fuel efficiency and collision safety are important issue. We have worked on a new construction method to develop body structure which is light weight and strong/stiff. We adopt multi type Tailor-Welded Blanks (TWB) which is formed after welding several steel sheets for ATENZA (MAZDA 6), NEW DEMIO (MAZDA 2), and RX-8. This is a technology to consistently improve of such product properties and to reduce costs. Laser welding is a common TWB welding method, but for further equipment cost reductions and productivity improvements, we have developed a higher welding speed and robust plasma welding and introduced this to mass production. We introduce this activity and results in this report.
Technical Paper

Achieving An Affordable Low Emission Steel Vehicle; An Economic Assessment of the ULSAB-AVC Program Design

2002-03-04
2002-01-0361
Vehicle weight reduction, reduced costs and improved safety performance are the main driving forces behind material selection for automotive applications. These goals are conflicting in nature and solutions will be realized by innovative design, advanced material processing and advanced materials. Advanced high strength steels are engineered materials that provide a remarkable combination of formability, strength, ductility, durability, strain-rate sensitivity and strain hardening characteristics essential to meeting the goals of automotive design. These characteristics act as enablers to cost- and mass-effective solutions. The ULSAB-AVC program demonstrates a solution to these conflicting goals and the advantages that are possible with the utilization of the advance high strength steels and provides a prediction of the material content of future body structures.
Technical Paper

Unsteady-Wake Analysis of the Aerodynamic Drag of a Notchback Model with Critical Afterbody Geometry

1992-02-01
920202
For both notchback-type and fastback-type models, it has been found that critical geometries which increase the aerodynamic drag exist, and the time-averaged wake patterns basically consist of an arch vortex behind the rear window and trailing vortices in the wake. The unsteady characteristics of the wake seem to be directly related to aerodynamic drag. However, the unsteady characteristics of these wake patterns for notchback and fastback cars were not clear. The purpose of present paper is to clarify these phenomena. We try to analyze experimentally the unsteady characteristics by measuring the velocity fluctuations in the wake, the pressure fluctuations on the trunk deck and the drag-force fluctuations acting on the model. At the same time, the analysis of the numerical simulation was made by using the same numerical model as the experimental model. The computed flow visualization behind the rear window showed a fluctuating arch vortex.
Technical Paper

Numerical Study of Aerodynamic Noise Radiated from a Three-Dimensional Wing

1992-02-01
920341
In this paper, a prediction method of the aerodynamic sound emitted from the three-dimensional delta wing of the attack angle at 15 degrees is presented. Computed flow Reynolds numbers range from 2.39x1 05 up to 9.56X 105. The method is based on the assumptions: flow Mach number is much less than unity and the strength of sound source equals Curle's dipole. These assumptions are validated by the experimental works performed in a quiet-flow-noise wind tunnel. Owing to the low Mach number condition, the computation region can be devided into two regions: inner flow region and outer wave region. The incompressible flow computation in the inner region is performed based on the full Navier-Stokes equations. The integration of the N-S equations are executed by using finite-difference method. For high Reynolds flow computation, the nonlinear convection terms are discretized by third-order upwind difference scheme.
Technical Paper

Additional Findings on the Multi-Modal Demands of “Voice-Command” Interfaces

2016-04-05
2016-01-1428
This paper presents the results of a study of how people interacted with a production voice-command based interface while driving on public roadways. Tasks included phone contact calling, full address destination entry, and point-of-interest (POI) selection. Baseline driving and driving while engaging in multiple-levels of an auditory-vocal cognitive reference task and manual radio tuning were used as comparison points. Measures included self-reported workload, task performance, physiological arousal, glance behavior, and vehicle control for an analysis sample of 48 participants (gender balanced across ages 21-68). Task analysis and glance measures confirm earlier findings that voice-command interfaces do not always allow the driver to keep their hands on the wheel and eyes on the road, as some assume.
Technical Paper

Thermal Fluid Analysis by a Mesh Free Simulation - Part 1 Analysis of the Thermal Fluid Field in a Headlamp Based on the Real 3D-CAD Model

2011-10-06
2011-28-0135
The thermal fluid field in a headlamp based on the real 3D-CAD model is analyzed by a mesh free method. The conducted method is a new CFD (Computational Fluid Dynamics) solver based on the couples of the points whose density is controlled scattered in the analysis space including the boundaries, which leads to much reduce the hand-working time in the deformation of the 3D-CAD model for the mesh generation. This paper focuses on the steady state airflow field in a headlamp under the conditions of natural ventilation including the effect of the buoyancy and the heat generation of the lamp surface for the demonstration of the conducted method without not only the deformation of the real 3D-CAD model but mesh generation. The differences of the pressure outlet conditions and heat generation of the headlamp on the amount of the ventilation are also experimented.
Technical Paper

Effect of Composition, Particle Size, and Heat Treatment on the Mechanical Properties of Al-4.5 wt.% Cu Based Alumina Particulate Reinforced Composites

1998-02-23
980700
The quest for higher efficiency and performance of automotive vehicles requires application of materials with high strength, stiffness and lower weight in their construction. Particulate-reinforced aluminum-matrix composites are cost-competitive materials, which can meet these requirements. MMCC, Inc. has been optimizing particulate-reinforced alloy systems and developing the Advanced Pressure Infiltration Casting (APIC™) process for the manufacture of components from these materials. This paper discusses the results of a recent study in which composites reinforced with 55 vol.% alumina were cast using two sizes of alumina particulate and eight different matrix alloys based on Al-4.5 wt.% Cu with varying amounts of silicon and magnesium. Optimum heat treatments for each alloy were determined utilizing microhardness studies. The tensile strength and fracture toughness were evaluated as a function of alloy chemistry, particulate size, and heat treatment.
Technical Paper

The Corrosion Resistance of Organic Composite-Coated Steel Sheets

1993-10-01
932365
In order to investigate the corrosion resistance of organic composite-coated steel sheets ( OCS ) in a real automotive environment, many kinds of corrosion tests were performed on test pieces and real automotive doors. Tests with a corrosive solution including iron rust were introduced to simulate the real corrosive environment of automotive doors. The relationship between the components of OCS and the corrosion resistance in the rust-including tests was examined. In addition, electrochemical studies were performed. Results indicate OCS has much better corrosion resistance than plated steel sheets with heavier coating weight in all tests. OCS shows excellent corrosion resistance in rust-free corrosive solution, however, some types of OCS do have corrosion concerns in rust-including tests. It became clear that these OCS types have an organic coating with lower cross-linking.
Technical Paper

Optimal Forming of Aluminum 2008-T4 Conical Cups Using Force Trajectory Control

1993-03-01
930286
In this paper we investigate the optimal forming of conical cups of AL 2008-T4 through the use of real-time process control. We consider a flat, frictional binder the force of which can be determined precisely through closed-loop control. Initially the force is held constant throughout the forming of the cup, and various levels of force are tested experimentally and with numerical simulation. Excellent agreement between experiment and simulation is observed. The effects of binder force on cup shape, thickness distribution, failure mode and cup failure height are investigated, and an “optimal” constant binder force is determined. For this optimal case, the corresponding punch force is recorded as a function of punch displacement and is used in subsequent closed-loop control experiments. In addition to the constant force test, a trial variable binder force test was performed to extend the failure height beyond that obtained using the “optimal” constant force level.
Technical Paper

Development of Capacitance-Loaded Window Antenna for AM/FM Car Radios

1995-02-01
950180
Mazda established an original design methodology combining a capacitive coupling technology and transmission line theory, to develop a high performance window antenna for AM/FM radios which construction is very simple to construct and requires no use of any antenna boosters or matching circuits. This paper introduces the design methodology and performance characteristics of the new antenna as well as its application to the production '95 model Mazda 929.
Technical Paper

Development of Magnesium Forged Wheel

1995-02-01
950422
Magnesium has the lowest specific gravity of all metals used for structural members. The application of magnesium for a road wheel leads to improved vehicle handling and drivability because of the reduction of an unsprung weight. The authors have developed new magnesium alloy which shows excellent mechanical properties and attained a magnesium forged road wheel that is 30% lighter than aluminum wheels.
Technical Paper

Development of Disk Brake Rotor Utilizing Aluminum Metal Matrix Composite

1997-02-24
970787
Disk brake rotors require reduced unsprung weight and improved cooling ability for improved fade performance. Automotive brake rotors made from aluminum metal matrix composites (MMC) were evaluated by dynamometer and vehicle tests for the required improvement. The friction and wear performance and the thermal response during fade stops were compared with those of commercially produced gray cast iron (GCI) rotors. It was proved that MMC is a very effective material to replace GCI for brake rotor application, as it reduces unsprung weight and decreases maximum operation temperature of the brake system.
X