Refine Your Search

Search Results

Viewing 1 to 13 of 13
Journal Article

Uncertainty Propagation in Multi-Disciplinary Design Optimization of Undersea Vehicles

2008-04-14
2008-01-0218
In this paper the development of statistical metamodels and statistical fast running models is presented first. They are utilized for propagating uncertainties in a multi-discipline design optimization process. Two main types of uncertainty can be considered in this manner: uncertainty due to variability in design variables or in random parameters; uncertainty due to the utilization of metamodels instead of the actual simulation models during the optimization process. The value of the new developments and their engagement in multi-discipline design optimization is demonstrated through a case study. An underwater vehicle is designed under four different disciplines, namely, noise radiation, self-noise due to TBL excitation, dynamic response due to propulsion impact loads, and response to an underwater detonation.
Technical Paper

Validation of an EFEA Formulation for Computing the Vibrational Response of Complex Structures

2007-05-15
2007-01-2324
This paper presents a validation case study for an Energy Finite Element Analysis (EFEA) formulation through comparison to test data. The EFEA comprises a simulation tool for computing the structural response of a complex structure and the amount of the radiated power. The EFEA formulation presented in this paper can account for periodic stiffeners, for partial fluid loading effects on the outer part of the structure, and for internal compartments filled with heavy fluid. In order to validate these modeling capabilities of the EFEA two 1/8th scale structures representing an advanced double hull design and a conventional hull design of a surface ship are analyzed. Results for the structural vibration induced on the outer bottom part of the structure are compared to available test data. The excitation is applied at two different locations of the deck structure. Good correlation is observed between the numerical results and the test data.
Technical Paper

A Substructuring Formulation for the Energy Finite Element Analysis

2007-05-15
2007-01-2325
In applications of the Energy Finite Element Analysis (EFEA) there is an increasing need for developing comprehensive models with a large number of elements which include both structural and interior fluid elements, while certain parts of the structure are considered to be exposed to an external fluid loading. In order to accommodate efficient computations when using simulation models with a large number of elements, joints, and domains, a substructuring computational capability has been developed. The new algorithm is based on dividing the EFEA model into substructures with internal and interface degrees of freedom. The system of equations for each substructure is assembled and solved separately and the information is condensed to the interface degrees of freedom. The condensed systems of equations from each substructure are assembled in a reduced global system of equations. Once the global system of equations has been solved the solution for each substructure is pursued.
Technical Paper

Combining an Energy Boundary Element with an Energy Finite Element Analysis for Airborne Noise Simulations

2007-05-15
2007-01-2178
The Energy Boundary Element Analysis (EBEA) has been utilized in the past for computing the exterior acoustic field at high frequencies (above ∼400Hz) around vehicle structures and numerical results have been compared successfully to test data [1, 2 and 3]. The Energy Finite Element Analysis (EFEA) has been developed for computing the structural vibration of complex structures at high frequencies and validations have been presented in previous publications [4, 5]. In this paper the EBEA is utilized for computing the acoustic field around a vehicle structure due to external acoustic noise sources. The computed exterior acoustic field comprises the excitation for the EFEA analysis. Appropriate loading functions have been developed for representing the exterior acoustic loading in the EFEA simulations, and a formulation has been developed for considering the acoustic treatment applied on the interior side of structural panels.
Technical Paper

Model Update and Statistical Correlation Metrics for Automotive Crash Simulations

2007-04-16
2007-01-1744
In order to develop confidence in numerical models which are used for automotive crash simulations, results are compared with test data. Modeling assumptions are made when constructing a simulation model for a complex system, such as a vehicle. Through a thorough understanding of the modeling assumptions an appropriate set of variables can be selected and adjusted in order to improve correlation with test data. Such a process can lead to better modeling practices when constructing a simulation model. Comparisons between the time history of acceleration responses from test and simulations are the most challenging. Computing accelerations correctly is more difficult compared to computing displacements, velocities, or intrusion levels due to the second order differentiation with time. In this paper a methodology for enabling the update of a simulation model for improved correlation is presented.
Technical Paper

Combining Energy Boundary Element with Energy Finite Element Simulations for Vehicle Airborne Noise Predictions

2008-04-14
2008-01-0269
The Energy Boundary Element Analysis (EBEA) has been utilized in the past for computing the exterior acoustic field at high frequencies (above ∼400Hz) around vehicle structures and numerical results have been compared successfully to test data [1, 2 and 3]. The Energy Finite Element Analysis (EFEA) has been developed for computing the structural vibration of complex structures at high frequencies and validations have been presented in previous publications [4, 5]. In this paper the EBEA is utilized for computing the acoustic field around a vehicle structure due to external acoustic noise sources. The computed exterior acoustic field comprises the excitation for the EFEA analysis. Appropriate loading functions have been developed for representing the exterior acoustic loading in the EFEA simulations, and a formulation has been developed for considering the acoustic treatment applied on the interior side of structural panels.
Technical Paper

Vehicle Airborne Noise Analysis Using Boundary Element and Finite Element Energy Based Methods

2009-05-19
2009-01-2222
The Energy Finite Element Analysis (EFEA) has been developed for computing the structural vibration and the interior noise level of complex structural-acoustic systems by solving governing differential equations with energy densities as primary variables. A finite element approach is employed for the numerical solution of the governing differential equations. Results from EFEA simulations have been compared successfully with test results for Naval, automotive, and aircraft structures. The Energy Boundary Element Analysis (EBEA) has been developed for conducting exterior acoustic simulations using the acoustic energy density as primary variable in the formulation. EBEA results have been compared successfully to the test results in the past for predicting the exterior acoustic field around a vehicle structure due to external noise sources. In this paper, the EBEA and EFEA methods are combined for predicting the interior noise levels in a vehicle due to exterior acoustic sources.
Technical Paper

Engaging Energy Based Structural-Acoustic Simulations in Multi-Discipline Design

2009-05-19
2009-01-2198
In order to be effective and maximize the weight and cost savings when designing for noise and vibration attributes, the structural-acoustics design effort must be concurrent with the efforts of other engineering disciplines (i.e. durability, crashworthiness, etc.). In this manner, it will be possible to account for the effects of structural changes across disciplines and improve the NVH performance while the structure is being configured rather than attempting to improve NVH characteristics after the structural design has been completed.
Technical Paper

Structure-borne Vehicle Analysis using a Hybrid Finite Element Method

2009-05-19
2009-01-2196
The hybrid FEA method combines the conventional FEA method with the energy FEA (EFEA) for computing the structural vibration in vehicle structures when the excitation is applied on the load bearing stiff structural members. Conventional FEA models are employed for modeling the behavior of the stiff members in the vehicle. In order to account for the effect of the flexible members in the FEA analysis, appropriate damping and spring/mass elements are introduced at the connections between stiff and flexible members. Computing properly the values of these damping and spring/mass elements is important for the overall accuracy of the computations. Utilizing in these computations the analytical solutions for the driving point impedance of infinite or semi-infinite members introduces significant approximations.
Technical Paper

Interior Aircraft Noise Computations due to TBL Excitation using the Energy Finite Element Analysis

2009-05-19
2009-01-2248
The Energy Finite Element Analysis (EFEA) has been developed for evaluating the vibro-acoustic behavior of complex systems. In the past EFEA results have been compared successfully to measured data for Naval, automotive, and aircraft systems. The main objective of this paper is to present information about the process of developing EFEA models for two configurations of a business jet, performing analysis for computing the vibration and the interior noise induced from exterior turbulent boundary layer excitation, and discussing the correlation between test data and simulation results. The structural EFEA model is generated from an existing finite element model used for stress analysis during the aircraft design process. Structural elements used in the finite element model for representing the complete complex aircraft structure become part of the EFEA structural model.
Technical Paper

Vehicle Airborne Noise Analysis Using the Energy Finite Element Method

2013-05-13
2013-01-1998
The Energy Finite Element Analysis (EFEA) has been developed for computing the structural vibration and the interior noise level of complex structural-acoustic systems by solving numerically governing differential equations with energy densities as primary variables. In this paper a complete simulation process for evaluating airborne noise in an automotive vehicle is presented and validated through extensive comparison to test data. The theoretical elements associated with the important paths of the noise transfer from the exterior of the vehicle to the interior acoustic space are discussed. The steps required for developing an EFEA model for a vehicle are presented. The model is developed based on the physical construction of the vehicle system and no test measurements are utilized for adjusting the numerical model.
Technical Paper

Comparison between Finite Element and Hybrid Finite Element Results to Test Data for the Vibration of a Production Car Body

2019-06-05
2019-01-1530
The Hybrid Finite Element Analysis (HFEA) method is based on combining conventional Finite Element Analysis (FEA) with analytical solutions and energy methods for mid-frequency computations. The method is appropriate for computing the vibration of structures which are comprised by stiff load bearing components and flexible panels attached to them; and for considering structure-borne loadings with the excitations applied on the load bearing members. In such situations, the difficulty in using conventional FEA at higher frequencies originates from requiring a very large number of elements in order to capture the flexible wavelength of the panel members which are present in a structure. In the HFEA the conventional FEA model is modified by de-activating the bending behavior of the flexible panels in the FEA computations and introducing instead a large number of dynamic impedance elements for representing the omitted bending behavior of the panels.
Journal Article

Structural-Acoustic Modeling and Optimization of a Submarine Pressure Hull

2019-06-05
2019-01-1498
The Energy Finite Element Analysis (EFEA) has been validated in the past through comparison with test data for computing the structural vibration and the radiated noise for Naval systems in the mid to high frequency range. A main benefit of the method is that it enables fast computations for full scale models. This capability is exploited by using the EFEA for a submarine pressure hull design optimization study. A generic but representative pressure hull is considered. Design variables associated with the dimensions of the king frames, the thickness of the pressure hull in the vicinity of the excitation (the latter is considered to be applied on the king frames of the machinery room), the dimensions of the frames, and the damping applied on the hull are adjusted during the optimization process in order to minimize the radiated noise in the frequency range from 1,000Hz to 16,000Hz.
X