Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Exhaust Flow Separation in a Two Stroke Engine

The two stroke direct injected gasoline engine is in part characterized by low temperature exhaust flow, particularly at light loads, due to the fresh air scavenging of the combustion chamber during the exhaust process. This study investigated the possibility of separating the exhaust flow into two regimes: 1) high temperature flow of the combustion products, and 2) low temperature flow from the fresh air scavenging process. Separation of the exhaust flow was accomplished by a mechanical device placed in the exhaust stream. In this way, emissions from the exhaust could be handled by two different catalysts and/or processes, each optimized for different temperature ranges and flow compositions. The first portion of this study involved validation of a computer model, using experimental data from a single cylinder engine with a stationary exhaust port and splitter.
Technical Paper

Modeling of Early Pressure Rise and Flame Growth in a Spark Ignition Engine

A thermodynamical model of the ignition and flame growth process was developed to understand and minimize cycle-to-cycle variations in pressure due to minor differences in flame kernel growth at the spark plug electrode between cycles. Initial flame kernel size after the spark breakdown process was determined by solving the one-dimensional cylindrical shock flow equation. Overall reaction rates, flame speeds including turbulence and intensity, high temperature equilibrium and other thermodynamic properties were calculated by peripheral sub-models. Relative effects of spark power, heat loss to the spark plug, and the chemical heat release were studied under varying engine conditions. Results show that breakdown energy has a significant effect on the formation and size of the initial kernel and that the effect of flame kernel velocity on subsequent combustion was considerable at specific engine conditions.
Technical Paper

The Performance of a Spark-Ignited Stratified-Charge Two Stroke Engine Operating on a Kerosine Based Aviation Fuel

This study examines the feasibility of broadening the fuel capabilities of a direct-injected two-stroke engine with stratified combustion. A three cylinder, direct-injected two-stroke engine was modified to operate on JP-5, a kerosene-based jet fuel that is heavier, more viscous, and less volatile than gasoline. Demonstration of engine operation with such a fuel after appropriate design modifications would significantly enhance the utilization of this engine in a variety of applications. Results have indicated that the performance characteristics of this engine with jet fuel are similar to that of gasoline with respect to torque and power output at low speeds and loads, but the engine's performance is hampered at the higher speeds and loads by the occurrence of knock.
Technical Paper

A Photographic Study of the Combustion of Low Cetane Fuels in a Diesel Engine Aided with Spark Assist

An experimental investigation of the ignition and combustion characteristics of two low cetane fuels in a spark assisted Diesel engine is described. A three cylinder Diesel engine was modified for single cylinder operation and fitted with a spark plug located in the periphery of the spray plume. Optical observations of ignition and combustion were obtained with high speed photography. Optical access was provided by a quartz piston crown and extended head arrangement. The low cetane fuels, a light end, low viscosity fuel and a heavy end, high viscosity fuel which were blended to bracket No. 2 Diesel fuel on the distillation curve, demonstrated extended operation in the modified Diesel engine. Qualitative and quantitative experimental observations of ignition delay, pressure rise, heat release, spray penetration and geometery were compared and evaluated against theoretical predictions.