Refine Your Search

Topic

Search Results

Journal Article

Rapid Prototyping Energy Management System for a Single Shaft Parallel Hybrid Electric Vehicle Using Hardware-in-the-Loop Simulation

2013-04-08
2013-01-0155
Energy management is one of the key challenges for the development of Hybrid Electric Vehicle (HEV) due to its complex powertrain structure. Hardware-In-the-Loop (HIL) simulation provides an open software architecture which enables rapid prototyping HEV energy management system. This paper presents the investigation of the energy management system for a single shaft parallel hybrid electric vehicle using dSPACE eDrive HIL system. The parallel hybrid electric vehicle, energy management system, and low-level Electronic Control Unit (ECU) were modeled using dSPACE Automotive Simulation Models and dSPACE blocksets. Vehicle energy management is achieved by a vehicle-level controller called hybrid ECU, which controls vehicle operation mode and torque distribution among Internal Combustion Engine (ICE) and electric motor. The individual powertrain components such as ICE, electric motor, and transmission are controlled by low-level ECUs.
Technical Paper

Compound Electroformed Metal Nozzles for High Pressure Gasoline Injection

1998-02-23
980818
The objective of this research was to evaluate the effects that higher fluid injection pressures and nozzle geometry have on compound fuel injector nozzle performance. Higher pressures are shown to significantly reduce droplet size, increase the discharge coefficient and reduce the overall size of a nozzle spray. It is also shown that the geometry has a significant effect on nozzle performance, and it can be manipulated to give a desired spray shape.
Technical Paper

A Computational Investigation of Hydrotreated Vegetable Oil Sprays Using RANS and a Modified Version of the RNG k - ε Model in OpenFOAM

2010-04-12
2010-01-0739
Hydrotreated vegetable oil (HVO) is a high-cetane number alternative fuel with the potential of drastic emissions reductions in high-pressure diesel engines. In this study the behavior of HVO sprays is investigated computationally and compared with conventional diesel fuel sprays. The simulations are performed with a modified version of the C++ open source code OpenFOAM using Reynolds-averaged conservation equations for mass, species, momentum and energy. The turbulence has been modeled with a modified version of the RNG k-ε model. In particular, the turbulence interaction between the droplets and the gas has been accounted for by introducing appropriate source terms in the turbulence model equations. The spray simulations reflect the setup of the constant-volume combustion cell from which the experimental data were obtained.
Technical Paper

Design and Analysis of an Adaptive Real-Time Advisory System for Improving Real World Fuel Economy in a Hybrid Electric Vehicle

2010-04-12
2010-01-0835
Environmental awareness and fuel economy legislation has resulted in greater emphasis on developing more fuel efficient vehicles. As such, achieving fuel economy improvements has become a top priority in the automotive field. Companies are constantly investigating and developing new advanced technologies, such as hybrid electric vehicles, plug-in hybrid electric vehicles, improved turbo-charged gasoline direct injection engines, new efficient powershift transmissions, and lighter weight vehicles. In addition, significant research and development is being performed on energy management control systems that can improve fuel economy of vehicles. Another area of research for improving fuel economy and environmental awareness is based on improving the customer's driving behavior and style without significantly impacting the driver's expectations and requirements.
Technical Paper

Design and Development of the 2001 Michigan Tech FutureTruck, a Power-Split Hybrid Electric Vehicle

2002-03-04
2002-01-1212
In this paper, the conversion of a production SUV to a hybrid electric vehicle with a drive system utilizing a planetary power-split transmission is presented. The uniqueness of this design comes from its ability to couple the advantages of a parallel hybrid with the advantages of a series hybrid. Depending on operating conditions and recent operating history, the drive system transitions to one of several driving modes. The drive system consists of a planetary gear set coupled to an alternator, motor, and internal combustion engine. It performs the power-split operation without the need for belt drives or clutching devices. The effects on driveability, manufacturing, fuel economy, emissions, and performance are presented along with the design, selection, and implementation of all of the vehicle conversion components.
Technical Paper

Comparing Single-Step and Multi-Step Chemistry Using The Laminar and Turbulent Characteristic Time Combustion Model In Two Diesel Engines

2002-05-06
2002-01-1749
Three-dimensional diesel engine combustion simulations with single-step chemistry have been compared with two-step and three-step chemistry by means of the Laminar and Turbulent Characteristic Time Combustion model using the Star-CD program. The second reaction describes the oxidation of CO and the third reaction describes the combustion of H2. The comparisons have been performed for two heavy-duty diesel engines. The two-step chemistry was investigated for a purely kinetically controlled, for a mixing limited and for a combination of kinetically and mixing limited oxidation. For the latter case, two different descriptions of the laminar reaction rates were also tested. The best agreement with the experimental cylinder pressure has been achieved with the three-step mechanism but the differences with respect to the two-step and single-step reactions were small.
Technical Paper

Design and Testing of a Four-Stroke, EFI Snowmobile with Catalytic Exhaust Treatment

2001-09-24
2001-01-3657
The successful implementation of a clean, quiet, four-stroke engine into an existing snowmobile chassis has been achieved. The snowmobile is easy to start, easy to drive and environmentally friendly. The following paper describes the conversion process in detail with actual engine test data. The hydrocarbon emissions of the new, four-stroke snowmobile are 98% lower than current, production, two-stroke models. The noise production of the four-stroke snowmobile was 68 dBA during an independent wide open throttle acceleration test. If the four-stroke snowmobile were to replace all current, two-stroke snowmobiles in Yellowstone National Park (YNP), the vehicles would only produce 16% of the combined automobile and snowmobile hydrocarbon emissions compared to the current 93% produced by two-stroke snowmobiles.
Technical Paper

Relating Integral Length Scale to Turbulent Time Scale and Comparing k-ε and RNG k-ε Turbulence Models in Diesel Combustion Simulation

2002-03-04
2002-01-1117
A modified version of the Laminar and Turbulent Characteristic Time combustion model and the Hiroyasu-Magnussen soot model have been implemented in the flow solver Star-CD. Combustion simulations of three DI diesel engines, utilizing the standard k-ε turbulence model and a modified version of the RNG k-ε turbulence model, have been performed and evaluated with respect to combustion performance and emissions. Adjustments of the turbulent characteristic combustion time coefficient, which were necessary to match the experimental cylinder peak pressures of the different engines, have been justified in terms of non-equilibrium turbulence considerations. The results confirm the existence of a correlation between the integral length scale and the turbulent time scale. This correlation can be used to predict the combustion time scale in different engines.
Technical Paper

Modeling of Lithium-Ion Battery Management System and Regeneration Control Strategy for Hybrid Electric Vehicles

2013-04-08
2013-01-0939
Battery management system (BMS) plays a key role in the power management of hybrid electric vehicles (HEV). It measures the state of charge (SOC), state of health (SOH) of the battery, protects the battery package and extends cells' life cycles. For HEV applications, lithium-ion battery is usually selected as electric power source due to its high specific energy, high energy density, and long life cycle. However, the non-linear characteristic of a Li-ion battery, complicated electro-chemical model, and environmental factors, raises the difficulties in the real-time estimation of the SOC for a Li-ion battery. To address this challenge, a BMS for HEVs is modeled with MATLAB/Simulink. In addition, a regenerative braking control strategy is proposed to determine the magnitude of the regenerative torque based on the battery SOC.
Technical Paper

Mathematical Modeling of Adsorption Processes for the International Space Station Water Processor

1995-07-01
951629
A mathematical model is presented for analysis and optimization of the adsorbents in the multifiltration beds contained in the International Space Station (ISS) water processor. The model consists of a physical properties database, an equilibrium description for single and multicomponent adsorption, and a kinetic description for adsorption beds in the water processor. The model is verified on a surrogate mixture designed to mimic the adsorption potential of the ISS shower/handwash waste stream.
Technical Paper

Catalytic Oxidation Model Development of the Volatile Reactor Assembly Unit of the International Space Station Water Processor

1995-07-01
951630
The destruction of organic contaminants in waste water for closed systems, such as that of the International Space Station, is crucial due to the need for recycling the waste water. A cocurrent upflow bubble column using oxygen as the gas phase oxidant and packed with catalyst particles consisting of a noble metal on an alumina substrate is being developed for this process. This paper addresses the development of a plug-flow model that will predict the performance of this three phase reactor system in destroying a multicomponent mixture of organic contaminants in water. Mass balances on a series of contaminants and oxygen in both the liquid and gas phases are used to develop this model. These mass balances incorporate the gas-to-liquid and liquid-to-particle mass transfer coefficients, the catalyst effectiveness factor, and intrinsic reaction rate.
Technical Paper

Ion Exchange Model Development for the International Space Station Water Processor

1995-07-01
951628
A mathematical model is presented for analysis and optimization of the ion exchange beds in the International Space Station (ISS) Water Processor. The model consists of a physical properties database, an equilibrium description for binary and multicomponent ion exchange, and a kinetic description for ion exchange beds in the Water Processor. The ion exchange model will be verified for an Ersatz water designed to mimic the ISS shower/handwash waste stream.
Technical Paper

Compound Port Fuel Injector Nozzle Droplet Sizes and Spray Patterns

1996-02-01
960114
The goal of this research was to determine an empirical method of relating the droplet sizes and the spray patterns to the parameters and the geometries of the compound nozzles. Two different types of compound nozzles were studied, the compound silicon micro machined nozzle and the compound metal disk nozzle. Several different orifice geometries of each nozzle type were examined. The injector components upstream of the compound nozzle of two different types of injectors were also studied. A nondimensional characterization of the droplet sizes and the mass flow rates was proposed. The results of this study show that there exists optimum geometric features that will produce sprays with the minimum steady state and dynamic Sauter mean diameter. The spray of a compound nozzle can be characterized by the atomization efficiency and the discharge coefficient. Nozzle testing results show that many flow characteristics are developed in the compound nozzle.
Technical Paper

Exhaust Flow Separation in a Two Stroke Engine

1996-02-01
960744
The two stroke direct injected gasoline engine is in part characterized by low temperature exhaust flow, particularly at light loads, due to the fresh air scavenging of the combustion chamber during the exhaust process. This study investigated the possibility of separating the exhaust flow into two regimes: 1) high temperature flow of the combustion products, and 2) low temperature flow from the fresh air scavenging process. Separation of the exhaust flow was accomplished by a mechanical device placed in the exhaust stream. In this way, emissions from the exhaust could be handled by two different catalysts and/or processes, each optimized for different temperature ranges and flow compositions. The first portion of this study involved validation of a computer model, using experimental data from a single cylinder engine with a stationary exhaust port and splitter.
Technical Paper

Computational Design of Experiments for Compound Fuel Injector Nozzles

1997-05-01
971617
A computational design of experiments was constructed to analyze two basic nozzle designs. Several geometric features of the nozzles such as cavity height, exit orifice area, turbulence generator area and exit orifice position in addition to the pressure differential across the injector were used in a 2k factorial design study. Performance characteristic which were analyzed in an analysis of variance study included the discharge coefficient. atomization efficiency and predicted spray pattern. The computational design of experiments revealed which of the studied parameters had the greatest influence on a given nozzle performance characteristic. These results were compared to a similar investigation which was later performed experimentally from which similar conclusions were drawn.
Technical Paper

The Effect of Truck Dieselization on Fuel Usage

1981-02-01
810022
The effect of truck dieselization for three levels of diesel penetration into each of the eight classes of trucks is modeled. Diesel and total truck sales, population, mileage and yearly fuel usage data are aggregated by four truck classes representing light, medium, light-heavy and heavy-heavy classes. Four fuel economy scenario's for different technological improvements were studied. Improvement of fuel economy for light and heavy-heavy duty vehicle classes provides significant total fuel savings. Truck dieselization of light and light-heavy duty vehicle classes provides the largest improvement of fuel usage due to the fact that they have large numbers of vehicles and presently have few diesels. Total car and truck fuel usage in the 1980's shows roughly a constant demand with cars decreasing due to improved new fleet fuel economy and trucks increasing due to a larger population with better fuel economy due to dieselization and improved technology.
Technical Paper

Pneumatic Atomization in an Annular Flow Nozzle

1987-02-01
870611
A simple geometry pneumatic atomizer which could be used on internal combustion engine was tested with water as the working fluid. The pneumatic atomizer consists of a cylindrical chamber with an orifice plate at the outlet end. Liquid flows down the chamber walls and onto the nozzle orifice plate as a film. Air flows down the center of the chamber. The interaction of the air and water, which occurs at the orifice, atomizes the water. Large droplets form near the nozzle orifice and break up as they go down stream. Variations in the droplet size occurred in the spray. When geometry and flow rates were varied, changes which decreased the water film thickness or increased the air velocity at the nozzle orifice yielded smaller droplets in the spray. Droplet size data was measured by Malvern Laser Particle Sizer.
Technical Paper

Predictive Control of a Power-Split HEV with Fuel Consumption and SOC Estimation

2015-04-14
2015-01-1161
This paper studies model predictive control algorithm for Hybrid Electric Vehicle (HEV) energy management to improve HEV fuel economy. In this paper, Model Predictive Control (MPC), a predictive control method, is applied to improve the fuel economy of power-split HEV. A dedicated model predictive control method is developed to predict vehicle speed, battery state of charge (SOC), and engine fuel consumption. The power output from the engine, motor, and the mechanical brake will be adjusted to match driver's power request at the end of the prediction window while minimizing fuel consumption. The controller model is built on Matlab® MPC toolbox® and the simulations are based on MY04 Prius vehicle model using Autonomie®, a powertrain and fuel economy analysis software, developed by Argonne National Laboratory. The study compares the performance of MPC and conventional rule-base control methods.
Technical Paper

Noise and Emission Reduction Strategies for a Snowmobile

2000-09-11
2000-01-2573
The following paper discusses alternative strategies for reducing noise and emission production from a two-stroke snowmobile. Electric, two-stroke and four-stroke solutions were analyzed and considered for entry in the Clean Snowmobile Challenge (CSC) 2000. A two-stroke solution was utilized primarily due to time constraints. Complete snowmobile competition results are provided. The electric solution, while the most effective at reducing emissions, is negatively impacted by weight and cost. A modified two-stroke solution, limited by cost and complexity, does not provide the required improvements in emissions. A four-stroke solution reduces noise and emissions and provides an acceptable trade-off between noise, emissions, performance and cost.
Technical Paper

Fuel-Optimal Strategies for Vehicle Supported Military Microgrids

2016-04-05
2016-01-0312
Vehicles with power exporting capability are microgrids since they possess electrical power generation, onboard loads, energy storage, and the ability to interconnect. The unique load and silent watch requirements of some military vehicles make them particularly well-suited to augment stationary power grids to increase power resiliency and capability. Connecting multiple vehicles in a peer-to-peer arrangement or to a stationary grid requires scalable power management strategies to accommodate the possibly large numbers of assets. This paper describes a military ground vehicle power management scheme for vehicle-to-grid applications. The particular focus is overall fuel consumption reduction of the mixed asset inventory of military vehicles with diesel generators typically used in small unit outposts.
X