Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Validation of a Model and Development of a Simulator for Predicting the Pressure Drop of Diesel Particulate Filters

2001-03-05
2001-01-0911
As demand for wall-flow Diesel Particulate Filters (DPF) increases, accurate predictions of DPF behavior, and in particular their pressure drop, under a wide range of operating conditions bears significant engineering applications. In this work, validation of a model and development of a simulator for predicting the pressure drop of clean and particulate-loaded DPFs are presented. The model, based on a previously developed theory, has been validated extensively in this work. The validation range includes utilizing a large matrix of wall-flow filters varying in their size, cell density and wall thickness, each positioned downstream of light or heavy duty Diesel engines; it also covers a wide range of engine operating conditions such as engine load, flow rate, flow temperature and filter soot loading conditions. The validated model was then incorporated into a DPF pressure drop simulator.
Technical Paper

An Automated Patternator for Fuel Injector Sprays

1996-02-01
960108
The spray pattern of a fuel injector is a key factor in the mixing of the fuel with the air. One effective means of determining the fuel distribution in the spray is to collect the fuel in tubes, from various regions of the spray. The amount of fuel in the tubes is measured. These measurements are used to create diagrams and curves which graphically represent the fuel distribution within the spray. The term “Patternator” has come to mean a device which determines the spray distribution, in the sense that the device determines the pattern of the spray. The objective of this paper is to describe the operation, features, and performance of an automated patternator designed and built at Michigan Technological University for Ford Motor Company. The patternator system was constructed for rapid determination of the spray pattern in order to expedite the development of automotive port fuel injectors.
Technical Paper

The First Annual Blizzard Baja

1981-09-01
810917
The First Annual Blizzard Baja was hosted by Michigan Technological University's SAE Student Branch on February 7, 1981. This was a competition between student designed vehicles which had previously competed in summer Baja events. The Blizzard Baja consisted of a one hour endurance race run on ice and snow. The purpose was to provide the student engineers an opportunity to test their vehicles in cold weather, snow and icy conditions.
Technical Paper

The Effects of Ambient Temperature and Vehicle Load on a Diesel Powered Truck Cooling System Performance Using a Computer Simulation Program

1984-11-01
841710
A computer simulation model to predict the thermal responses of an on-highway heavy duty diesel truck in transient operation was used to study several important cooling system design and operating variables. The truck used in this study was an International Harvester COF-9670 cab-over-chassis vehicle equipped with a McCord radiator, Cummins NTC-350 diesel engine, Kysor fan-clutch and shutter system, aftercooler, and standard cab heater and cooling system components. Input data from several portions of a Columbus to Bloomington, Indiana route were used from the Vehicle Mission Simulation (VMS) program to determine engine and vehicle operating conditions for the computer simulation model. The thermostat-fan, thermostat-shutter-fan, and thermostat-winterfront-fan systems were studied.
Technical Paper

A Dynamic Computer-Aided Engineering Model for Automobile Climate Control System Simulation and Application Part II: Passenger Compartment Simulation and Applications

1999-03-01
1999-01-1196
A Computer-Aided Engineering (CAE) model for automobile climate control system is presented to provide engineers with an cost effective analysis tool for designing, developing, and optimizing the vehicle interior climate. It is the objective of this paper to develop a mathematical model which predicts the lumped temperature and lumped humidity variations inside the passenger compartment under design and operating conditions. The transient nature of the passenger cabin temperature, average interior mass temperature, and humidity are modeled using three coupled non-linear ordinary differential equations based on mass and energy balances. These equations are then solved by a fourth-order Runge-Kutta method with adaptive step size control.
X