Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

High Performance Auto Parts Could be Produced Using CastCon Manufacturing Process

High performance auto parts such as aluminum composite cladding aluminum brake and Ti/Ti3/Al joined exhaust valve with localized Ti+TiC composite coating could be produced using a new manufacturing method - the CastCon process. The aluminum composite cladding aluminum brake consists of an aluminum alloy body with a cladding of SiC and graphite particulate filled aluminum composite on the friction surface of a brake disk or a drum. This structure can ensure an over-all light weight and integral strength and ductility. The SiC particulate in the cladding composite increases abrasion resistance and the graphite particulate provides required lubrication. The cladding can be as thick as desired. There is a flexibility in the manufacturing process for selecting SiC and graphite loading volumes as well as particulate size and shape. This allows the part to be engineered to achieve maximum performance.
Technical Paper

A Study of the Regeneration Process in Diesel Particulate Traps Using a Copper Fuel Additive

The goals of this research are to understand the regeneration process in ceramic (Cordierite) monolith traps using a copper fuel additive and to investigate the various conditions that lead to trap regeneration failure. The copper additive lowers the trap regeneration temperature from approximately 500 °C to 375 °C and decreases the time necessary for regeneration. Because of these characteristics, it is important to understand the effect of the additive on regeneration when excessive particulate matter accumulation occurs in the trap. The effects of particulate mass loading on regeneration temperatures and regeneration time were studied for both the controlled (engine operated at full load rated speed) and uncontrolled (trap regeneration initiated at full load rated speed after which the engine was cut to idle) conditions. The trap peak temperatures were higher for the uncontrolled than the controlled regeneration.
Technical Paper

Effects of a Ceramic Particle Trap and Copper Fuel Additive on Heavy-Duty Diesel Emissions

This research quantifies the effects of a copper fuel additive on the regulated [oxides of nitrogen (NOx), hydrocarbons (HC) and total particulate matter (TPM)] and unregulated emissions [soluble organic fraction (SOF), vapor phase organics (XOC), polynuclear aromatic hydrocarbons (PAH), nitro-PAH, particle size distributions and mutagenic activity] from a 1988 Cummins LTA10 diesel engine using a low sulfur fuel. The engine was operated at two steady state modes (EPA modes 9 and 11, which are 75 and 25% load at rated speed, respectively) and five additive levels (0, 15, 30, 60 and 100 ppm Cu by mass) with and without a ceramic trap. Measurements of PAH and mutagenic activity were limited to the 0, 30 and 60 ppm Cu levels. Data were also collected to assess the effect of the additive on regeneration temperature and duration. Copper species collected within the trap were identified and exhaust copper concentrations quantified.
Technical Paper

The Effect of a Ceramic Trap on Diesel Particulate: Fractions

A study of the Corning ceramic diesel particulate trap was conducted to investigate the trap's overall effect on diesel particulate fractions (soluble organic fraction. SOF; solid fraction, SOL; and sulfate fraction. SO4) under four different engine loads at 1680 rpm. The trap was found to filter the SOL fraction most efficiently with the SOF and SO4 fraction following in respective order. The filter efficiency of all fractions increased with increasing engine load. Graphs illustrating filter efficiency versus engine load indicate the slope of the SOF filter efficiency was smaller in magnitude than the TPM and SOL and SO4, fractions, which had similar slopes. The different slope of the SOF filter efficiency indicates other influences may be involved with the reduction in the SOF through the trap. Particle size distribution measurements in diluted exhaust revealed particle formation downstream of the trap.