Refine Your Search



Search Results

Technical Paper

Spatial Non-Uniformities in Diesel Particulate Trap Regeneration

Diesel particulate trap regeneration is a complex process involving the interaction of phenomena at several scales. A hierarchy of models for the relevant physicochemical processes at the different scales of the problem (porous wall, filter channel, entire trap) is employed to obtain a rigorous description of the process in a multidimensional context. The final model structure is validated against experiments, resulting in a powerful tool for the computer-aided study of the regeneration behavior. In the present work we employ this tool to address the effect of various spatial non-uniformities on the regeneration characteristics of diesel particulate traps. Non-uniformities may include radial variations of flow, temperature and particulate concentration at the filter inlet, as well as variations of particulate loading. In addition, we study the influence of the distribution of catalytic activity along the filter wall.
Technical Paper

Inertial Contributions to the Pressure Drop of Diesel Particulate Filters

Wall-flow Diesel particulate filters operating at low filtration velocities usually exhibit a linear dependence between the filter pressure drop and the flow rate, conveniently described by a generalized Darcy's law. It is advantageous to minimize filter pressure drop by sizing filters to operate within this linear range. However in practice, since there often exist serious constraints on the available vehicle underfloor space, a vehicle manufacturer is forced to choose an “undersized” filter resulting in high filtration velocities through the filter walls. Since secondary inertial contributions to the pressure drop become significant, Darcy's law can no longer accurately describe the filter pressure drop. In this paper, a systematic investigation of these secondary inertial flow effects is presented.
Technical Paper

A Computer Simulation of the Turbocharged Diesel Engine as an Enhancement of the Vehicle Engine Cooling System Simulation

A computer simulation of the turbocharged direct- injection diesel engine was developed to enhance the capabilities of the Vehicle Engine Cooling System Simulation (VECSS) developed at Michigan Technological University. The engine model was extensively validated against Detroit Diesel Corporation's (DDC) Series 60 engine data. In addition to the new engine model a charge-air-cooler model was developed and incorporated into the VECSS. A Freightliner truck with a Detroit Diesel's Series 60 engine, Behr McCord radiator, AlliedSignal/Garrett Automotive charge air cooler, Kysor DST variable speed fan clutch and other cooling system components was used for the study. The data were collected using the Detroit Diesel Electronic Controls (DDEC)-Electronic Control Module (ECM) and Hewlett Packard data acquisition system. The enhanced model's results were compared to the steady state TTD (top tank differential) data.
Technical Paper

Mathematical Modeling of Adsorption Processes for the International Space Station Water Processor

A mathematical model is presented for analysis and optimization of the adsorbents in the multifiltration beds contained in the International Space Station (ISS) water processor. The model consists of a physical properties database, an equilibrium description for single and multicomponent adsorption, and a kinetic description for adsorption beds in the water processor. The model is verified on a surrogate mixture designed to mimic the adsorption potential of the ISS shower/handwash waste stream.
Technical Paper

Catalytic Oxidation Model Development of the Volatile Reactor Assembly Unit of the International Space Station Water Processor

The destruction of organic contaminants in waste water for closed systems, such as that of the International Space Station, is crucial due to the need for recycling the waste water. A cocurrent upflow bubble column using oxygen as the gas phase oxidant and packed with catalyst particles consisting of a noble metal on an alumina substrate is being developed for this process. This paper addresses the development of a plug-flow model that will predict the performance of this three phase reactor system in destroying a multicomponent mixture of organic contaminants in water. Mass balances on a series of contaminants and oxygen in both the liquid and gas phases are used to develop this model. These mass balances incorporate the gas-to-liquid and liquid-to-particle mass transfer coefficients, the catalyst effectiveness factor, and intrinsic reaction rate.
Technical Paper

Ion Exchange Model Development for the International Space Station Water Processor

A mathematical model is presented for analysis and optimization of the ion exchange beds in the International Space Station (ISS) Water Processor. The model consists of a physical properties database, an equilibrium description for binary and multicomponent ion exchange, and a kinetic description for ion exchange beds in the Water Processor. The ion exchange model will be verified for an Ersatz water designed to mimic the ISS shower/handwash waste stream.
Technical Paper

Computer Simulation of Refrigerant Vapor Condenser in Transient Operation

The formulation of mathematical model for the computational simulation of transient temperature response and phase change of refrigerant in a vapor condenser of an automotive air conditioning unit is described. A demonstrative computational simulation of a sample air cooled vapor condenser charged with Freon 12 is presented. The computational analysis predicts an initial surge and followed by an oscillation of the condensate outflow rate from the condenser when the air-conditioning unit is started, and the tube length required for complete condensation of inflow vapor is a maximum value at start up. The rise of the temperatures of the condenser tubes and cooling air flow during the start-up and load change operations rate found to be gradual but the scale of these temperature changes are considered small.
Technical Paper

A Methodology for Rapid Calculation of Computational Thermal Models

Too often many heat management problems are not solved with thermal analysis because of excessive complexity, time, and cost. A method for quickly solving a sophisticated thermal/fluid system with minimal user interaction and with common desktop computer resources is presented. A desktop (Microsoft Windows™) thermal analysis package, WinTherm, consists of the Generic Processor (pre-processing software), the 3-D Thermal Model (a finite difference nodal network solver), and an Image Viewer (wireframe and animated thermal display). The theoretical basis for this thermal analysis toolkit will be discussed as well as examples of its implementation.
Technical Paper

Automated Radiation Modeling for Vehicle Thermal Management

A fast, semi-automated method for visualizing the time-varying effects of radiative heat transfer, including obscuration and multiple reflections, is presented. Starting with a finite element surface description, an analyst assigns “groups” to a model by indicating which elements have the same material and surface properties. The elements within each group are combined into isothermal nodes. View factors are then calculated using a variant of the hemi-cube method. Transient nodal temperatures are calculated using an implicit solution to the finite difference equations derived from the thermal properties of each node and the radiation exchange between nodes.
Technical Paper

Strain Path Effects on the Modified FLD Caused by Variable Blank Holder Force

The objective in this research is to investigate the effects of variable blank holder force (VBHF) on the material formability, due to its effect on the strain path. It is found in a recent study [9] that VBHF does not significantly affect the overall trend of the strain path. This strain path in deep drawing process is linear for the materials in the flange and under punch face, and is roughly bi-linear for the material around the punch nose. The second segment of the strain path in the punch nose region is plane-strain. VBHF, however, affects the strain ratio ρ1 = ε2/ε1 of the first segment of the bi-linear strain path. These effects, especially ρ1, on limit strain were studied using M-K method. A strain path dependent modified forming limit diagram (MFLD) was calculated based on the actual strain path. It is found that the MFLD is strongly dependent on ρ1.
Technical Paper

Exhaust Flow Separation in a Two Stroke Engine

The two stroke direct injected gasoline engine is in part characterized by low temperature exhaust flow, particularly at light loads, due to the fresh air scavenging of the combustion chamber during the exhaust process. This study investigated the possibility of separating the exhaust flow into two regimes: 1) high temperature flow of the combustion products, and 2) low temperature flow from the fresh air scavenging process. Separation of the exhaust flow was accomplished by a mechanical device placed in the exhaust stream. In this way, emissions from the exhaust could be handled by two different catalysts and/or processes, each optimized for different temperature ranges and flow compositions. The first portion of this study involved validation of a computer model, using experimental data from a single cylinder engine with a stationary exhaust port and splitter.
Technical Paper

The Use of Results from Computational Fluid Dynamic Fuel Injector Modeling to Predict Spray Characteristics

The fluid flow characteristics inside compound silicon micro machined port fuel injector nozzles were analyzed through the use of computational fluid dynamics (CFD). This study was undertaken in order to gain a better understanding of the fluid mechanics taking place in the compound orifice plate. In addition, the calculated computational results will be used to predict the fuel spray patterns and sauter mean diameters of the sprays. The influence of orifice plate geometry on calculated turbulent kinetic energies and fuel spray patterns was also studied and will be discussed. The results of this investigation indicate that the fluid flow characteristics inside the compound silicon micro machined port fuel injector nozzle are influenced by the geometries of the compound orifice plate, and that the flow characteristic inside the orifice plate effect the type of spray produced by the injector.
Technical Paper

Effects of an Oxidation Catalytic Converter on Regulated and Unregulated Diesel Emissions

In this study, the effects of an oxidation catalytic converter (OCC) on regulated and unregulated emissions from a 1991 prototype Cummins I.10-310 diesel engine fueled with a 0.01 weight percent sulfur fuel were investigated. The OCC's effects were determined by measuring and comparing selected raw exhaust emissions with and without the platinum-based OCC installed in the exhaust system, with the engine operated at three steady-state modes. It was found that the OCC had no significant effect on oxides of nitrogen (NOX) and nitric oxide (NO) at any mode, but reduced hydrocarbon (HC) emmissions by 60 to 70 percent. The OCC reduced total particulate matter (TPM) levels by 27 to 54 percent, primarily resulting from 53 to 71 percent reductions of the soluble organic fraction (SOF). The OCC increased sulfate (SO42-) levels at two of the three modes (modes 9 and 10), but the overall SO42- contribution to TPM was less than 6 percent at all modes due to the low sulfur level of the fuel.
Technical Paper

Dynamic Modeling of Forces on Snowplow Equipped Trucks

A major task of road and airfield maintenance for transportation departments in the Northern United States and in cold regions globally is snow removal. In addition, there is a service industry built on snowplow equipped light trucks to remove snow from vehicle serviceways and parking lots. Thus, a source of stresses on a truck frame are the forces applied by the plow. Unfortunately, very little research has been performed to provide design models that will predict these forces. In this paper, both theoretical and experimental work on developing expressions for snowplow forces will be discussed.
Technical Paper

A Theoretical and Experimental Study of the Regeneration Process in a Silicon Carbide Particulate Trap Using a Copper Fuel Additive

The purpose of this study was to investigate the pressure drop and regeneration characteristics of a silicon carbide (SiC) wall-flow diesel particulate filter. The performance of a 25 μm mean pore size SiC dual trap system (DTS) consisting of two 12 liter traps connected in parallel in conjunction with a copper (Cu) fuel additive was evaluated. A comparison between the 25 μm DTS and a 15 μm DTS was performed, in order to show the effect of trap material mean pore size on trap loading and regeneration behavior. A 1988 Cummins LTA 10-300 diesel engine was used to evaluate the performance of the 15 and 25 μm DTS. A mathematical model was developed to better understand the thermal and catalytic oxidation of the particulate matter. For all the trap steady-state loading tests, the engine was run at EPA mode 11 for 10 hours. Raw exhaust samples were taken upstream and downstream of the trap system in order to determine the DTS filtration efficiency.
Technical Paper

A Statistical Approach to Determining the Effects of Speed, Load, Oil and Coolant Temperature on Diesel Engine Specific Fuel Consumption

Experimental Brake Specific Fuel Consumption (BSFC) data are presented for two engines as a function of engine speed, load, outlet coolant temperature and inlet oil temperature. The engines used in the study were the Cummins VT-903 (turbocharged) and the Caterpillar 3208, both being direct-injection and four-cycle. The data were taken for the Cat 3208 engine using a fractional factorial statistical method which reduced the total test matrix from 256 to 64 data points. The experimental data are used in the development of BSFC regression equations as a function of load, speed, outlet coolant temperature and inlet oil temperatures. A mathematical parameter for expressing quantitatively the change of BSFC per 10°F change in coolant and oil temperature is presented. It was found that an increase in the coolant and/or oil temperatures had the effect of reducing BSFC in both engines.
Technical Paper

The Study of the Effect of Exhaust Gas Recirculation on Engine Wear in a Heavy-Duty Diesel Engine Using Analytical Ferrography

A study was undertaken to investigate the affect of exhaust gas recirculation (EGR) on engine wear and lubricating oil degradation in a heavy duty diesel engine using a newly developed methodology that uses analytical ferrography in conjunction with short term tests. Laboratory engine testing was carried out on a Cummins NTC-300 Big Cam II diesel engine at rated speed (1800 RPM) and 75% rated load with EGR rates of 0, 5, and 15% using a SAE 15W40 CD/SF/EO-K oil. Dynamometer engine testing involved collecting oil samples from the engine sump at specified time intervals through each engine test. These oil samples were analyzed using a number of different oil analysis techniques that provide information on the metal wear debris and also on the lubricating oil properties. The results from these oil analysis techniques are the basis of determining the effect of EGR on engine wear and lubricating oil degradation, rather than an actual engine tear down between engine tests.
Technical Paper

Design for the Super Mileage Competition

Twenty vehicles from eighteen schools competed in the Second SAE Super Mileage Competition at the Eaton Proving Grounds, Marshall, Michigan, on June 6, 1981. Of these, fifteen completed all of the events with the winner obtaining 702 miles/gallon (298.4 KM/liter). The designs of the successful vehicles were quite varied but stressed lightness, aerodynamic streamlining, low rolling resistance and efficient drive trains. Some engines were also modified- to improve efficiency. The integrated optimization of all variables within the severe constraints of budget, manpower, time and manufacturing facilities presented an excellent engineering experience for the students.
Technical Paper

Interactive Design Using Eigenvalue Modification, A Comparison of Experimental and Theoretical Modal Analysis

This paper examines the feasibility of using eigenvalue modification as the effective algorithm for interactive modal analysis. The dynamic characteristics of a cantilever beam are determined experimentally and compared to the results of an analytical study. The model is then modified with the addition of mass and stiffness. The results predicted using eigenvalue modification theory on the analytical model compare very favorably with experimentally determined results.
Technical Paper

The Effect of an Oxidation Catalyst on the Physical, Chemical, and Biological Character of Diesel Particulate Emissions

A diesel oxidation catalyst (Engelhard PTX Series) was evaluated on a medium-duty diesel engine (Caterpillar 3208, naturally aspirated, direct injection). Tests were conducted at six modes of the EPA 13 mode heavy-duty cycle to measure the total particulate, soluble organic fraction (SOF), sulfates, NO, NO2, NOx and hydrocarbons emitted by the engine with and without the oxidation catalysts. Chemical analysis of the SOF collected was carried out to determine the effects of the catalysts on each of the subfractions composing the SOF. The Ames Salmonella/microsome bioassay was employed to quantify the mutagenic properties of the particulate SOF. Test results show large increases in the amounts of total particulate and sulfate emissions due to the catalyst while the amounts of SOF are reduced by the catalyst. The amounts of NOx produced with and without the catalyst are similar, but the equivalent NO2 emitted with the catalyst installed is increased at most modes.