Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

LES Simulation of Direct Injection SI-Engine In-Cylinder Flow

2012-04-16
2012-01-0138
The present paper deals with the application of the LES approach to in-cylinder flow modeling. The main target is to study cycle-to-cycle variability (CCV) using 3D-CFD simulation. The engine model is based on a spark-ignited single-cylinder research engine. The results presented in this paper cover the motored regime aiming at analysis of the cycle-resolved local flow properties at the spark plug close to firing top dead center. The results presented in this paper suggest that the LES approach adopted in the present study is working well and that it predicts CCV and that the qualitative trends are in-line with established knowledge of internal combustion engine (ICE) in-cylinder flow. The results are evaluated from a statistical point of view based on calculations of many consecutive cycles (at least 10).
Technical Paper

Assessment of Low Levels of Particulate Matter Exhaust Emissions Using Low-Cost Ionization-Type Smoke Detectors

2013-09-08
2013-24-0168
Traditional smoke opacity measurement, performed on diesel engines during regular emissions inspections, sensitive primarily to larger particles of elemental carbon, is very little sensitive to nanoparticles and to semi-volatile “organic carbon” particles. For this reason, it no longer suffices as a high emitter detection tool for modern vehicles with a particle filter or for advanced low-emissions technology where semi-volatile organic particles are the dominant fraction of particulate matter. This paper investigates the potential of common low-cost ionization type smoke detectors, produced in mass quantities for fire detection in buildings, as a tool to measure particle emissions in vehicular exhaust. Two ionization chambers were used to measure both raw and diluted exhaust of various engines powered by diesel fuel and biofuels under laboratory conditions as well as on the road.
Technical Paper

Automated Radiation Modeling for Vehicle Thermal Management

1995-02-01
950615
A fast, semi-automated method for visualizing the time-varying effects of radiative heat transfer, including obscuration and multiple reflections, is presented. Starting with a finite element surface description, an analyst assigns “groups” to a model by indicating which elements have the same material and surface properties. The elements within each group are combined into isothermal nodes. View factors are then calculated using a variant of the hemi-cube method. Transient nodal temperatures are calculated using an implicit solution to the finite difference equations derived from the thermal properties of each node and the radiation exchange between nodes.
Technical Paper

An Infrared Technique for Measuring Cycle-Resolved Transient Combustion-Chamber Surface Temperatures in a Fired Engine

1986-03-01
860240
An optical technique for measuring transient combustion chamber surface temperatures in a fired engine has been developed. The spectral region from 3.6 to 4.0 microns was found to be suitable for making optical measurements through the methane-air flame. The experimental apparatus was capable of making simultaneous time-resolved measurements of infrared gas absorption, gas emission and surface radiation during a single engine cycle. The effects of engine operating conditions on gas absorption and gas emission were investigated. Measurements of “simulated” deposits at temperatures ranging from 569 K to 944 K indicated that the technique was accurate within 7 K at the higher temperatures.
X