Refine Your Search

Topic

Search Results

Viewing 1 to 16 of 16
Journal Article

Characteristics of Formaldehyde (CH2O) Formation in Dimethyl Ether (DME) Spray Combustion Using PLIF Imaging

2016-04-05
2016-01-0864
Recognition of Dimethyl Ether (DME) as an alternative fuel has been growing recently due to its fast evaporation and ignition in application of compression-ignition engine. Most importantly, combustion of DME produces almost no particulate matter (PM). The current study provides a further understanding of the combustion process in DME reacting spray via experiment done in a constant volume combustion chamber. Formaldehyde (CH2O), an important intermediate species in hydrocarbon combustion, has received much attention in research due to its unique contribution in chemical pathway that leads to the combustion and emission of fuels. Studies in other literature considered CH2O as a marker for UHC species since it is formed prior to diffusion flame. In this study, the formation of CH2O was highlighted both temporally and spatially through planar laser induced fluorescence (PLIF) imaging at wavelength of 355-nm of an Nd:YAG laser at various time after start of injection (ASOI).
Technical Paper

Conjugate Heat Transfer in CI Engine CFD Simulations

2008-04-14
2008-01-0973
The development of new high power diesel engines is continually going for increased mean effective pressures and consequently increased thermal loads on combustion chamber walls close to the limits of endurance. Therefore accurate CFD simulation of conjugate heat transfer on the walls becomes a very important part of the development. In this study the heat transfer and temperature on piston surface was studied using conjugate heat transfer model along with a variety of near wall treatments for turbulence. New wall functions that account for variable density were implemented and tested against standard wall functions and against the hybrid near wall treatment readily available in a CFD software Star-CD.
Technical Paper

Novel Two-Stroke Engine Concept, Feasibility Study

2003-10-27
2003-01-3211
A novel two-stroke engine concept is introduced. The cylinder scavenging takes place during the upward motion of the piston. The gas exchange valves are similar to typical four-stroke valves, but the intake valves are smaller and lighter. The scavenging air pressure is remarkably higher than in present-day engines. The high scavenging air pressure is produced by an external compressor. The two-stroke operation is achieved without the drawbacks of port scavenged engines. Moreover, the combustion circumstances, charge pressure and temperature and internal exhaust gas re-circulation (EGR) can be controlled by using valve timings. There is good potential for a substantial reduction in NOx emissions through the use of adjustable compression pressure and temperature and by using the adjustable amount of exhaust gas re-circulation.
Technical Paper

Comparing Single-Step and Multi-Step Chemistry Using The Laminar and Turbulent Characteristic Time Combustion Model In Two Diesel Engines

2002-05-06
2002-01-1749
Three-dimensional diesel engine combustion simulations with single-step chemistry have been compared with two-step and three-step chemistry by means of the Laminar and Turbulent Characteristic Time Combustion model using the Star-CD program. The second reaction describes the oxidation of CO and the third reaction describes the combustion of H2. The comparisons have been performed for two heavy-duty diesel engines. The two-step chemistry was investigated for a purely kinetically controlled, for a mixing limited and for a combination of kinetically and mixing limited oxidation. For the latter case, two different descriptions of the laminar reaction rates were also tested. The best agreement with the experimental cylinder pressure has been achieved with the three-step mechanism but the differences with respect to the two-step and single-step reactions were small.
Technical Paper

Relating Integral Length Scale to Turbulent Time Scale and Comparing k-ε and RNG k-ε Turbulence Models in Diesel Combustion Simulation

2002-03-04
2002-01-1117
A modified version of the Laminar and Turbulent Characteristic Time combustion model and the Hiroyasu-Magnussen soot model have been implemented in the flow solver Star-CD. Combustion simulations of three DI diesel engines, utilizing the standard k-ε turbulence model and a modified version of the RNG k-ε turbulence model, have been performed and evaluated with respect to combustion performance and emissions. Adjustments of the turbulent characteristic combustion time coefficient, which were necessary to match the experimental cylinder peak pressures of the different engines, have been justified in terms of non-equilibrium turbulence considerations. The results confirm the existence of a correlation between the integral length scale and the turbulent time scale. This correlation can be used to predict the combustion time scale in different engines.
Technical Paper

LES and RNG Turbulence Modeling in DI Diesel Engines

2003-03-03
2003-01-1069
The one-equation subgrid scale model for the Large Eddy Simulation (LES) turbulence model has been compared to the popular k-ε RNG turbulence model in very different sized direct injection diesel engines. The cylinder diameters of these engines range between 111 and 200 mm. This has been an initial attempt to study the effect of LES in diesel engines without any modification to the combustion model being used in its Reynolds-averaged Navier-Stokes (RANS) form. Despite some deficiencies in the current LES model being used, it already gave much more structured flow field with approximately the same kind of accuracy in the cylinder pressure predictions than the k-ε RNG turbulence model.
Technical Paper

Innovative Exergy-Based Combustion Phasing Control of IC Engines

2016-04-05
2016-01-0815
Exergy or availability is the potential of a system to do work. In this paper, an innovative exergy-based control approach is presented for Internal Combustion Engines (ICEs). An exergy model is developed for a Homogeneous Charge Compression Ignition (HCCI) engine. The exergy model is based on quantification of the Second Law of Thermodynamic (SLT) and irreversibilities which are not identified in commonly used First Law of Thermodynamics (FLT) analysis. An experimental data set for 175 different ICE operating conditions is used to construct the SLT efficiency maps. Depending on the application, two different SLT efficiency maps are generated including the applications in which work is the desired output, and the applications where Combined Power and Exhaust Exergy (CPEX) is the desired output. The sources of irreversibility and exergy loss are identified for a single cylinder Ricardo HCCI engine.
Technical Paper

Exhaust Flow Separation in a Two Stroke Engine

1996-02-01
960744
The two stroke direct injected gasoline engine is in part characterized by low temperature exhaust flow, particularly at light loads, due to the fresh air scavenging of the combustion chamber during the exhaust process. This study investigated the possibility of separating the exhaust flow into two regimes: 1) high temperature flow of the combustion products, and 2) low temperature flow from the fresh air scavenging process. Separation of the exhaust flow was accomplished by a mechanical device placed in the exhaust stream. In this way, emissions from the exhaust could be handled by two different catalysts and/or processes, each optimized for different temperature ranges and flow compositions. The first portion of this study involved validation of a computer model, using experimental data from a single cylinder engine with a stationary exhaust port and splitter.
Technical Paper

Influence of the Piston Inter-ring Pressure on the Ring Pack Behaviour in a Medium Speed Diesel Engine

2005-10-24
2005-01-3847
The present work aims to determine the gas pressure acting in the ring pack area in a medium-speed four stroke diesel engine. The experimental part of the study was carried out as firing engine tests, with an instrumented piston, with telemetric data transmission, and an instrumented cylinder liner in a 6-cylinder test engine. The results, in terms of inter-ring gas pressure are compared with the results of computer simulations. Moreover, the computer simulations were carried out to predict and compare the effects of the piston running clearance and the ring face wear on the inter-ring pressures. The study comprises aspects on inter-ring pressures under a set of loads. The measured inter-ring gas pressures indicate steady ring operation. The simulation results show good agreement with measurement results.
Technical Paper

Cylinder Charge, Initial Flow Field and Fuel Injection Boundary Condition in the Multidimensional Modeling of Combustion in Compression Ignition Engines

2004-10-25
2004-01-2963
Cylinder charge, cylinder flow field and fuel injection play the dominant roles in controlling combustion in compression ignition engines. Respective computational cylinder charge, initial flow field and fuel injection boundary affect combustion simulation and the quality of emission prediction. In this study the means of generating the initial values and boundary data are presented and the effect of different methods is discussed. This study deals with three different compression ignition engines with cylinder diameters of 111, 200 and 460 mm. The initial cylinder charge has been carefully analyzed through gas exchange pressure recordings and corresponding 1-dimensional simulation. The swirl generated by intake ports in a high-speed engine is simulated and measured. The combustion simulation using a whole cylinder model was compared with a sector model simulation result.
Technical Paper

Heat Transfer Study of a High Power Density Diesel Engine

2004-10-25
2004-01-2962
The development of diesel engines is constantly leading to greater increases in the power density. The heat load into the combustion chamber walls increases with the increased power density. Estimating correct local heat fluxes inside the combustion chamber is one of the most challenging tasks in engine simulation. In this study, the heat load of the piston was estimated with the help of the modern simulation tools CFD and FEM. The objective of the work was to evaluate the thermal stress of a research engine designed for an exceptionally high maximum and mean pressure. The local heat transfer coefficient and gas temperature were simulated with a CFD code with the standard and modified wall functions and used as boundary values for the FEM analysis. As a reference case, a model of a production engine with measured piston surface temperatures was used to validate the combined CFD and FEM analysis.
Technical Paper

A Photographic Study of the Combustion of Low Cetane Fuels in a Diesel Engine Aided with Spark Assist

1986-03-01
860066
An experimental investigation of the ignition and combustion characteristics of two low cetane fuels in a spark assisted Diesel engine is described. A three cylinder Diesel engine was modified for single cylinder operation and fitted with a spark plug located in the periphery of the spray plume. Optical observations of ignition and combustion were obtained with high speed photography. Optical access was provided by a quartz piston crown and extended head arrangement. The low cetane fuels, a light end, low viscosity fuel and a heavy end, high viscosity fuel which were blended to bracket No. 2 Diesel fuel on the distillation curve, demonstrated extended operation in the modified Diesel engine. Qualitative and quantitative experimental observations of ignition delay, pressure rise, heat release, spray penetration and geometery were compared and evaluated against theoretical predictions.
Technical Paper

An Infrared Technique for Measuring Cycle-Resolved Transient Combustion-Chamber Surface Temperatures in a Fired Engine

1986-03-01
860240
An optical technique for measuring transient combustion chamber surface temperatures in a fired engine has been developed. The spectral region from 3.6 to 4.0 microns was found to be suitable for making optical measurements through the methane-air flame. The experimental apparatus was capable of making simultaneous time-resolved measurements of infrared gas absorption, gas emission and surface radiation during a single engine cycle. The effects of engine operating conditions on gas absorption and gas emission were investigated. Measurements of “simulated” deposits at temperatures ranging from 569 K to 944 K indicated that the technique was accurate within 7 K at the higher temperatures.
Technical Paper

Friction between Piston and Cylinder of an IC Engine: a Review

2011-04-12
2011-01-1405
Engine friction serves as an important domain for study and research in the field of internal combustion engines. Research shows that friction between the piston and cylinder accounts for almost 20% of the losses in an engine and therefore any effort to minimize friction losses will have an immediate impact on engine efficiency and thus vehicle fuel economy. The two most common methods to experimentally measure engine friction are the floating liner method and the instantaneous indicated mean effective pressure (IMEP) method. This paper provides a detailed review of the IMEP method, presents major findings, and discusses sources of error. Although the instantaneous IMEP method is relatively new compared to the floating liner method, it has been used by many scientists and engineers for calculating piston ring assembly friction with consistent results.
Technical Paper

Optical In-Cylinder Measurements of a Large-Bore Medium-Speed Diesel Engine

2008-10-06
2008-01-2477
The objective of this study was to build up an optical access into a large bore medium-speed research engine and carry out the first fuel spray Particle Image Velocimetry (PIV) measurements in the running large bore medium-speed engine in high pressure environment. The aim was also to measure spray penetration with same optical access and apparatus. The measurements were performed in a single-cylinder large bore medium-speed research engine, the Extreme Value Engine (EVE) with optical access into the combustion chamber. The authors are not aware of any other studies on optical spray measurements in large bore medium-speed diesel engines. Successful optical measurements of the fuel spray penetration and the velocity fields were carried out. This confirms that the exceptional component design and laser sheet alignment used in this study proved to be valid for optical fuel spray measurements in large-bore medium-speed diesel engines.
Technical Paper

Fuel Film Dynamics in the Intake Port of a Fuel Injected Engine

1994-03-01
940446
Up to 80 percent of the total hydrocarbons emitted during the EPA Federal emissions test are produced in the first five minutes of this procedure. It has been theorized that this is in part due to wall wetting of the intake port and cylinder. This study measures the behavior of the fuel film thickness in the intake port during cold starting, steady state and transient operation. Three injector spray patterns with varying droplet sizes were utilized for the tests. The fuel film thickness in the intake port of a Ford 1.9L engine was measured using optical sensors. It was found that the spray pattern and droplet size affected the port wall wetting characteristics.
X