Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Numerical Investigation of Laminar Flame Speed of Gasoline - Ethanol/Air Mixtures with Varying Pressure, Temperature and Dilution

2010-04-12
2010-01-0620
A numerical analysis was performed to study the variation of the laminar burning speed of gasoline-ethanol blend, pressure, temperature and dilution using the one-dimensional premixed flame code CHEMKIN™. A semi-detailed validated chemical kinetic model (142 species and 672 reactions) for a gasoline surrogate fuel was used. The pure components in the surrogate fuel consist of n-heptane, isooctane and toluene. The ethanol mole fraction was varied from 0 to 85 percent, initial pressure from 4 to 8 bar, initial temperature from 300 to 600K, and the EGR dilution from 0 to 32% to represent the in-cylinder conditions of a spark-ignition engine. The laminar flame speed is found to increase with ethanol concentration and temperature but decrease with pressure and dilution.
Journal Article

Effects of Biodiesel Blends on Particulate Matter Oxidation in a Catalyzed Particulate Filter during Active Regeneration

2010-04-12
2010-01-0557
Active regeneration experiments were performed on a production diesel aftertreatment system containing a diesel oxidation catalyst and catalyzed particulate filter (CPF) using blends of soy-based biodiesel. The effects of biodiesel on particulate matter oxidation rates in the filter were explored. These experiments are a continuation of the work performed by Chilumukuru et al., in SAE Technical Paper No. 2009-01-1474, which studied the active regeneration characteristics of the same aftertreatment system using ultra-low sulfur diesel fuel. Experiments were conducted using a 10.8 L 2002 Cummins ISM heavy-duty diesel engine. Particulate matter loading of the filter was performed at the rated engine speed of 2100 rpm and 20% of the full engine load of 1120 Nm. At this engine speed and load the passive oxidation rate is low. The 17 L CPF was loaded to a particulate matter level of 2.2 g/L.
Journal Article

A Novel Singular Perturbation Technique for Model-Based Control of Cold Start Hydrocarbon Emission

2014-04-01
2014-01-1547
High hydrocarbon (HC) emission during a cold start still remains one of the major emission control challenges for spark ignition (SI) engines in spite of about three decades of research in this area. This paper proposes a cold start HC emission control strategy based on a reduced order modeling technique. A novel singular perturbation approximation (SPA) technique, based on the balanced realization principle, is developed for a nonlinear experimentally validated cold start emission model. The SPA reduced model is then utilized in the design of a model-based sliding mode controller (SMC). The controller targets to reduce cumulative tailpipe HC emission using a combination of fuel injection, spark timing, and air throttle / idle speed controls. The results from the designed multi-input multi-output (MIMO) reduced order SMC are compared with those from a full order SMC. The results show the reduced SMC outperforms the full order SMC by reducing both engine-out and tailpipe HC emission.
Technical Paper

Engine Sound Reduction and Enhancement Using Engine Vibration

2020-09-30
2020-01-1537
Over the past decade, there have been many efforts to generate engine sound inside the cabin either in reducing way or in enhancing way. To reduce the engine noise, the passive way, such as sound absorption or sound insulation, was widely used but it has a limitation on its reduction performance. In recent days, with the development of signal processing technology, ANC (Active Noise Control) is been used to reduce the engine noise inside the cabin. On the other hand, technologies such as ASD (Active Sound Design) and ESG (Engine Sound Generator) have been used to generate the engine sound inside the vehicle. In the last ISNVH, Hyundai Motor Company newly introduced ESEV (Engine Sound by Engine Vibration) technology. This paper describes the ESEV Plus Minus that uses engine vibration to not only enhance the certain engine order components but reduce the other components at the same time. Consequently, this technology would produce a much more diverse engine sound.
Journal Article

Characteristics of Formaldehyde (CH2O) Formation in Dimethyl Ether (DME) Spray Combustion Using PLIF Imaging

2016-04-05
2016-01-0864
Recognition of Dimethyl Ether (DME) as an alternative fuel has been growing recently due to its fast evaporation and ignition in application of compression-ignition engine. Most importantly, combustion of DME produces almost no particulate matter (PM). The current study provides a further understanding of the combustion process in DME reacting spray via experiment done in a constant volume combustion chamber. Formaldehyde (CH2O), an important intermediate species in hydrocarbon combustion, has received much attention in research due to its unique contribution in chemical pathway that leads to the combustion and emission of fuels. Studies in other literature considered CH2O as a marker for UHC species since it is formed prior to diffusion flame. In this study, the formation of CH2O was highlighted both temporally and spatially through planar laser induced fluorescence (PLIF) imaging at wavelength of 355-nm of an Nd:YAG laser at various time after start of injection (ASOI).
Journal Article

Efficient Re-Analysis Methodology for Probabilistic Vibration of Large-Scale Structures

2008-04-14
2008-01-0216
It is challenging to perform probabilistic analysis and design of large-scale structures because probabilistic analysis requires repeated finite element analyses of large models and each analysis is expensive. This paper presents a methodology for probabilistic analysis and reliability based design optimization of large scale structures that consists of two re-analysis methods; one for estimating the deterministic vibratory response and another for estimating the probability of the response exceeding a certain level. The deterministic re-analysis method can analyze efficiently large-scale finite element models consisting of tens or hundreds of thousand degrees of freedom and large numbers of design variables that vary in a wide range. The probabilistic re-analysis method calculates very efficiently the system reliability for many probability distributions of the design variables by performing a single Monte Carlo simulation.
Journal Article

Probabilistic Reanalysis Using Monte Carlo Simulation

2008-04-14
2008-01-0215
An approach for Probabilistic Reanalysis (PRA) of a system is presented. PRA calculates very efficiently the system reliability or the average value of an attribute of a design for many probability distributions of the input variables, by performing a single Monte Carlo simulation. In addition, PRA calculates the sensitivity derivatives of the reliability to the parameters of the probability distributions. The approach is useful for analysis problems where reliability bounds need to be calculated because the probability distribution of the input variables is uncertain or for design problems where the design variables are random. The accuracy and efficiency of PRA is demonstrated on vibration analysis of a car and on system reliability-based optimization (RBDO) of an internal combustion engine.
Journal Article

Optimization of a Forged Steel Crankshaft Subject to Dynamic Loading

2008-04-14
2008-01-0432
In this study a dynamic simulation was conducted on a forged steel crankshaft from a single cylinder four stroke engine. Finite element analysis was performed to obtain the variation of the stress magnitude at critical locations. The dynamic analysis resulted in the development of the load spectrum applied to the crankpin bearing. This load was then applied to the FE model and boundary conditions were applied according to the engine mounting conditions. Results obtained from the aforementioned analysis were then used in optimization of the forged steel crankshaft. Geometry, material, and manufacturing processes were optimized using different geometric constraints, manufacturing feasibility, and cost. The first step in the optimization process was weight reduction of the component considering dynamic loading. This required the stress range under dynamic loading not to exceed the magnitude of the stress range in the original crankshaft.
Journal Article

Effects of Sulfur Level and Anisotropy of Sulfide Inclusions on Tensile, Impact, and Fatigue Properties of SAE 4140 Steel

2008-04-14
2008-01-0434
During metal forming processes such as rolling and forging, deformable manganese sulfide (MnS) inclusions become elongated. Such elongated MnS inclusions can have considerable adverse effects on mechanical properties, if the inclusions are not aligned with the loading direction. The objectives of this study were to evaluate and compare fatigue, monotonic tensile and CVN impact behavior of SAE 4140 steel with high (0.077% S), low (0.012% S) and ultra low (0.004% S) sulfur contents at two hardness levels (40 HRC and 50 HRC). The longitudinally oriented samples at 40 HRC, where MnS inclusions were oriented along the loading direction, did not exhibit any significant sensitivity of tensile or fatigue properties to the sulfur content. For the transversely oriented MnS inclusions, however, the monotonic tensile test results indicate very low ductility of the high sulfur material at both hardness levels, where specimens failed shortly after yielding.
Journal Article

Axial and Bending Fatigue of a Medium Carbon Steel Including Geometry and Residual Stress Effects

2009-04-20
2009-01-0422
This paper discusses the effects of changes in specimen geometry, stress gradient, and residual stresses on fully-reversed constant amplitude uniaxial fatigue behavior of a medium carbon steel. Axial fatigue tests were performed on both flat and round specimens, while four-point rotating bending tests were performed only on round specimens. All the tests were performed using shot peened and unpeened flat and round samples, to investigate the effects of compressive residual stresses on fatigue behavior. The specimens in the rotating bending tests experienced longer life for a given stress amplitude than in the axial test. Shot-peening was found to be beneficial in the long life region, while in short life tests the shot-peened samples experienced a shorter life than the unpeened samples under both axial and bending test conditions.
Journal Article

Rapid Prototyping Energy Management System for a Single Shaft Parallel Hybrid Electric Vehicle Using Hardware-in-the-Loop Simulation

2013-04-08
2013-01-0155
Energy management is one of the key challenges for the development of Hybrid Electric Vehicle (HEV) due to its complex powertrain structure. Hardware-In-the-Loop (HIL) simulation provides an open software architecture which enables rapid prototyping HEV energy management system. This paper presents the investigation of the energy management system for a single shaft parallel hybrid electric vehicle using dSPACE eDrive HIL system. The parallel hybrid electric vehicle, energy management system, and low-level Electronic Control Unit (ECU) were modeled using dSPACE Automotive Simulation Models and dSPACE blocksets. Vehicle energy management is achieved by a vehicle-level controller called hybrid ECU, which controls vehicle operation mode and torque distribution among Internal Combustion Engine (ICE) and electric motor. The individual powertrain components such as ICE, electric motor, and transmission are controlled by low-level ECUs.
Journal Article

Investigation of Key Mechanisms for Liquid Length Fluctuations in Transient Vaporizing Diesel Sprays

2013-04-08
2013-01-1594
Diesel combustion and emissions formation is spray and mixing controlled and understanding spray parameters is key to determining the impact of fuel injector operation and nozzle design on combustion and emissions. In this study, both spray visualization and computational fluid dynamics (CFD) modeling were undertaken to investigate key mechanisms for liquid length fluctuations. For the experimental portion of this study a common rail piezoelectric injector was tested in an optically accessible constant volume combustion vessel. Liquid penetration of the spray was determined via processing of images acquired from Mie back scattering under vaporizing conditions by injecting into a charge gas at elevated temperature with a 0% oxygen environment. Tests were undertaken at a gas density of 34.8 kg/m₃, 2000 bar injection pressure, and at ambient temperatures of 900, 1100, and 1300 K.
Journal Article

Fatigue Life Predictions under General Multiaxial Loading Based on Simple Material Properties

2011-04-12
2011-01-0487
A procedure for fatigue life estimation of components and structures under variable amplitude multiaxial loadings based on simple and commonly available material properties is presented. Different aspects of the analysis consisting of load cycle counting method, plasticity model, fatigue damage parameter, and cumulative damage rule are presented. The only needed material properties for the proposed procedure are hardness and monotonic and axial cyclic deformation properties (HB, K, n, K′ and n′). Rainflow cycle counting method is used for identifying number of cycles. Non-proportional cyclic hardening is estimated from monotonic and axial cyclic deformation behaviors. A critical plane approach is used to quantify fatigue damage under variable amplitude multiaxial loading, where only material hardness is used to estimate the fatigue curve, and where the needed deformation response is estimated based on Tanaka's non-proportionality parameter.
Journal Article

A Comparison of Cold-Start Behavior and its Impact on Fuel Economy for Advanced Technology Vehicles

2014-04-01
2014-01-1375
Vehicle operation during cold-start powertrain conditions can have a significant impact on drivability, fuel economy and tailpipe emissions in modern passenger vehicles. As efforts continue to maximize fuel economy in passenger vehicles, considerable engineering resources are being spent in order to reduce the consumption penalties incurred shortly after engine start and during powertrain warmup while maintaining suitably low levels of tailpipe emissions. Engine downsizing, advanced transmissions and hybrid-electric architecture can each have an appreciable effect on cold-start strategy and its impact on fuel economy. This work seeks to explore the cold-start strategy of several passenger vehicles with different powertrain architectures and to understand the resulting fuel economy impact relative to warm powertrain operation. To this end, four vehicles were chosen with different powertrain architectures.
Technical Paper

The Performance of a Spark-Ignited Stratified-Charge Two Stroke Engine Operating on a Kerosine Based Aviation Fuel

1997-09-08
972737
This study examines the feasibility of broadening the fuel capabilities of a direct-injected two-stroke engine with stratified combustion. A three cylinder, direct-injected two-stroke engine was modified to operate on JP-5, a kerosene-based jet fuel that is heavier, more viscous, and less volatile than gasoline. Demonstration of engine operation with such a fuel after appropriate design modifications would significantly enhance the utilization of this engine in a variety of applications. Results have indicated that the performance characteristics of this engine with jet fuel are similar to that of gasoline with respect to torque and power output at low speeds and loads, but the engine's performance is hampered at the higher speeds and loads by the occurrence of knock.
Technical Paper

Compound Electroformed Metal Nozzles for High Pressure Gasoline Injection

1998-02-23
980818
The objective of this research was to evaluate the effects that higher fluid injection pressures and nozzle geometry have on compound fuel injector nozzle performance. Higher pressures are shown to significantly reduce droplet size, increase the discharge coefficient and reduce the overall size of a nozzle spray. It is also shown that the geometry has a significant effect on nozzle performance, and it can be manipulated to give a desired spray shape.
Technical Paper

Dynamic Load and Stress Analysis of a Crankshaft

2007-04-16
2007-01-0258
In this study a dynamic simulation was conducted on a crankshaft from a single cylinder four stroke engine. Finite element analysis was performed to obtain the variation of stress magnitude at critical locations. The pressure-volume diagram was used to calculate the load boundary condition in dynamic simulation model, and other simulation inputs were taken from the engine specification chart. The dynamic analysis was done analytically and was verified by simulation in ADAMS which resulted in the load spectrum applied to crank pin bearing. This load was applied to the FE model in ABAQUS, and boundary conditions were applied according to the engine mounting conditions. The analysis was done for different engine speeds and as a result critical engine speed and critical region on the crankshaft were obtained. Stress variation over the engine cycle and the effect of torsional load in the analysis were investigated.
Technical Paper

Assessment of Imprecise Reliability Using Efficient Probabilistic Reanalysis

2007-04-16
2007-01-0552
In reliability design, often, there is scarce data for constructing probabilistic models. Probabilistic models whose parameters vary in known intervals could be more suitable than Bayesian models because the former models do not require making assumptions that are not supported by the available evidence. If we use models whose parameters vary in intervals we need to calculate upper and lower bounds of the failure probability (or reliability) of a system in order to make design decisions. Monte Carlo simulation can be used for this purpose, but it is too expensive for all but very simple systems. This paper proposes an efficient Monte-Carlo simulation approach for estimation of upper and lower probabilities. This approach is based on two ideas: a) use an efficient approach for reliability reanalysis of a system, which is introduced in this paper, and b) approximate the probability distribution of the minimum and maximum failure probabilities using extreme value statistics.
Technical Paper

The Optimization of Open COWL Structure to Give Free Shape to the Design of a Pillar Outer Panel Front

2009-04-20
2009-01-1231
At present, the assembling order of COWL is decided according to the design of the Vehicle’s A pillar outer. Therefore when the factory layout changes, extensive costs are needed according to the changes of the A pillar outer design. Thus, this study was carried out to develop a new COWL structure that is able to determine the layout of the factory without changing the design of the A pillar outer. In addition, by adjusting the DFSS tool to COWL, the direction of the material and thickness of COWL was studied to optimize the dynamic stiffness of the body structure and pedestrian protection performance. Based on this study, the optimization of the OPEN COWL is presented.
Technical Paper

Reliability Estimation of Large-Scale Dynamic Systems by using Re-analysis and Tail Modeling

2009-04-20
2009-01-0200
Probabilistic studies can be prohibitively expensive because they require repeated finite element analyses of large models. Re-analysis methods have been proposed with the premise to estimate accurately the dynamic response of a structure after a baseline design has been modified, without recalculating the new response. Although these methods increase computational efficiency, they are still not efficient enough for probabilistic analysis of large-scale dynamic systems with low failure probabilities (less or equal to 10-3). This paper presents a methodology that uses deterministic and probabilistic re-analysis methods to generate sample points of the response. Subsequently, tail modeling is used to estimate the right tail of the response PDF and the probability of failure a highly reliable system. The methodology is demonstrated on probabilistic vibration analysis of a realistic vehicle FE model.
X