Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Optimization of In-Cylinder Flow and Mixing for a Center-Spark Four-Valve Engine Employing the Concept of Barrel-Stratification

1994-03-01
940986
Flow and flame structure visualization and modeling were performed to clarify the characteristics of bulk flow, turbulence and mixing in a four-valve engine to adopt the lean combustion concept named “Barrel-Stratification” to the larger displacement center-spark four-valve engine. It was found that the partitions provided in the intake port and the tumble-control piston with a curved-top configuration were effective to enhance the lean combustion of such an engine. By these methods, the fuel distribution in the intake port and the in-cylinder bulk flow structure are optimized, so that the relatively rich mixture zone is arranged around the spark plug. The tumble-control piston also contributes to optimize the flow field structure after the distortion of tumble and to enable stable lean combustion.
Technical Paper

Analysis of Vehicle Wind Throb Using CFD and Flow Visualization

1997-02-24
970407
Passenger cars with sunroofs sometimes experience a low frequency pulsation noise called “wind throb” when traveling with the roof open. This “wind throb” should be suppressed because it is an unpleasant noise which can adversely affect the acoustic environment inside a car. In this paper, 3-dimensional numerical flow analysis is applied around a car body to investigate the wind throb phenomenon. The computational scheme and the modeling method of the car body is first described. A flow visualization test in a water tunnel was completed for the simple car body shape to compare against the numerical procedure. The numerical and the visualized results compared well and the numerical simulation method employed was considered to be a reliable tool to analyze the wind throb phenomenon. Calculated results of pressure and vorticity distribution in the sunroof opening were analyzed with the spectrum of pressure fluctuation at the sunroof opening with and without a deflector.
Technical Paper

Development and Application of the Road Profile Measuring System

1993-03-01
930257
A high-performance road profile measuring system has developed. The measuring system consists of four laser displacement sensors and an optical speed sensor. It has the advantage of making high-accuracy measurements during a regular run, on a public road, and without any traffic restriction. The measurement is hardly affected by bouncing and pitching motions of the vehicle. The four displacement sensors are arranged at unequal intervals in the direction of vehicle. A road profile is calculated from sensor outputs. This paper describes not only the development of this unique measuring system but also its application to a vehicle behavior. Significant measurements of typical and peculiar public roads in Japan and Northern Europe by the measuring vehicle have been performed for the last few years. The features of these roads are described by the power spectrum densities and the profiles.
Technical Paper

Structural Joint Stiffness of Automotive Body

1988-02-01
880550
An analysis of the static behavior of T-shaped joint is presented. Advanced testings by laser holography and infrared ray stress wave analyzers verified the surface deformation and the stress concentration of joint area, which are very important factors of thin-walled joint stiffness. The definition of structural joint stiffness is attempted, and the relationship between structural joint stiffness and sizes(dimension) of the constructing members is obtained in case of a thin-walled T-shaped member with rectangular cross section. The parametric study to accomplish weight reduction, while maintaining the necessary structural joint stiffness, is described in case of Rocker to Center pillar. The numerical analysis of body structure considering the structural joint stiffness shows better accuracy as compared with the analysis with the joint assumed rigid.
X