Refine Your Search



Search Results

Technical Paper

A Study of Friction Reduction by ‘Soft Skirt’ Piston

To reduce friction is required to improve engine fuel economy. This study aimed to reduce piston skirt friction, which is a major factor in engine friction. ‘Soft skirt’ is a trendy item in recent gasoline engines, which can improve skirt sliding condition by larger deformation when the piston is pressed to the liner. The effect is confirmed by friction measurement and oil film observation, using prototype pistons. And also one major factor of the effect is clarified that not only side force but also cylinder pressure causes effective deformation of the skirt to create thick oil film at early combustion stroke.
Technical Paper

Mixing Control Strategy for Engine Performance Improvement in a Gasoline Direct Injection Engine

Spray motion visualization, mixture strength measurement, flame spectral analyses and flame behavior observation were performed in order to elucidate the mixture preparation and the combustion processes in Mitsubishi GDI engine. The effects of in-cylinder flow called reverse tumble on the charge stratification were clarified. It preserves the mixture inside the spherical piston cavity, and extends the optimum injection timing range. Mixture strength at the spark plug and at the spark timing can be controlled by changing the injection timing. It was concluded that reverse tumble plays a significant role for extending the freedom of mixing. The characteristics of the stratified charge combustion were clarified through the flame radiation analyses. A first flame front with UV luminescence propagates rapidly and covers all over the combustion chamber at the early stage of combustion.
Technical Paper

Feasibility Study of Two-stage Hybrid Combustion in Gasoline Direct Injection Engines

Two-stage hybrid combustion for a 6-stroke gasoline direct injection SI engine is a new strategy to control the ignition of the HCCI combustion using hot-burned gas from the stratified lean SI combustion. This combustion is achieved by changing the camshafts, the cam-driven gear ratio and the engine control of a conventional 4-stroke gasoline direct injection engine without using a higher compression ratio, any fuel additives and induction air heating devices. The combustion processes are performed twice in one cycle. After the gas exchange process, the stratified ultra-lean SI combustion is performed. The hot-burned gas generated from this SI combustion is used as a trigger for the next HCCI combustion. After gasoline is injected in the burned gas, the hot and homogeneous lean mixture is recompressed without opening the exhaust valves. Thus the HCCI combustion occurs.
Technical Paper

Intake-Port Design for Mitsubishi GDI Engine to Realize Distinctive In-Cylinder Flow and High Charge Coefficient

The Mitsubishi GDI engine has adopted a pair of upright intake ports, to induce a rotating in-cylinder flow, reverse tumble, and control air fuel mixing with this flow. The port design of the GDI engine was optimized for achieving a high intensity of the reverse tumble while maintaining a high charge coefficient, by means of modeling of in-cylinder flow and experiment with a steady flow rig. First of all, the ideal design of the upright ports was discussed. It was found that for enhancing the reverse tumble, it is more effective to arrange a pair of the ports parallel, than to arrange them convergent. The parallel arrangement leads to the smoother flows passing through the intake sides of the intake valves, and then descending on the cylinder liner, that is turning toward the rotation direction of the reverse tumble, because of less impingement of the flows through a pair of the valves.
Technical Paper

Idling Stop System Coupled with Quick Start Features of Gasoline Direct Injection

The gasoline direct injection engine starts significantly faster than a conventional engine. Fuel can be injected into the cylinder during the compression stroke at the same time of cranking start. When the spark plug ignites the mixture at the end of compression stroke, the engine has its first combustion, that is, the first combustion occurs within 0.2 sec after the start of cranking. This unique characteristic of quick startability has realized a idle stop system, which enables drivers to operate the vehicle in a natural manner.
Technical Paper

Development of Compact, Water-Cooled Engine K2AS

Mitsubishi has developed the new, compact, water-cooled vertical type 2-cylinder diesel engine model K2AS and brought it to market in spring of '82. The K2AS is a small-sized engine of 451 cc total displacement and 10HP/3600 rpm maximum output. Its weight of 58 kg is light enough to use this diesel engine for various machines which have formerly been driven by gasoline engines. The well matched combustion chamber and injection system realize low fuel consumption, low noise and easy engine starting. High durability is also assured by various kinds of reliability evaluation. Features of K2AS are outlined below.
Technical Paper

Development of thermoplastic elastomeric vacuum hose for engine control

Vulcanized rubber hoses are difficult to recycle and have a complicated manufacturing process. Recently, we have developed the vacuum hose for engine control out of thermoplastic elastomers. As a result of this development, scrap material from the manufacturing process can be recycled and, in addition, about a 30 percent weight reduction and a 20 percent cost reduction are achievable by virtue of the lower specific gravity and by the more simplified manufacturing process. In order to assess the feasibility of using thermoplastic elastomers for vacuum hoses, we developed a heat aging simulation test method. This was achieved by first investigating the actual vehicle environmental conditions of currently used vacuum hoses by retrieving and examining these hoses from used vehicles. We then extrapolated what the condition of such hoses would be after being subjected to heat aging for 200,000 km of service in an actual vehicle, and applied this calculation to our newly developed hoses.
Technical Paper

Mitsubishi's Compound Intake System Engine

Mitsubishi Motors Corporation presents the newly-developed 2-liter engine, which we have named SIRIUS DASH. The SIRIUS DASH engine, with its compound intake system, features great performance in both high and low speed ranges while keeping fuel consumption low. The compound intake system operates the 3 valves in 2 stages. When engine speed is low, just one intake valve is used, but when engine speed increases, two intake valves are used. And to make this engine truly extraordinary, we added a turbocharger with an intercooler, and equipped the whole thing with a total electonic control system. Generally, high performance engines which have large inlet ports and high speed type valve timing enabling them to intake sufficient air for high performance at high speeds. The problem is here that when speed is dropped, combustion becomes unstable at the expense of torque and fuel consumption.
Technical Paper

IMEP Estimation from Instantaneous Crankshaft Torque Variation

Crankshaft torque fluctuation has been theoretically analyzed and possible sources of error have been reviewed in the cases of determining the indicated mean effective pressure (Pmi) from measurement of the flywheel angular-speed fluctuation. The specific objective of this study was to develop a new approach to determine Pmi from the crankshaft torque of a SI engine, and it has successfully proven that using an appropriate data processing for the angular-speed fluctuation, Pmi in low- to medium-speed ranges can be estimated with very high accuracy in terms of 99% or higher coefficient of correlation to the in-cylinder pressure sensor.
Technical Paper

Development of a New Multi-Mode Variable Valve Timing Engine

The 4-stroke SI engine offers better performance if its valve events can be varied depending on the operating conditions. Some engines in production are therefore incorporated with variable valve timing (VVT) mechanisms. All of such mechanisms available today however are for two-mode change-over between low-and high-speed operations. To achieve even better output and fuel economy, a new multi-mode VVT mechanism has been developed, featured by a unique hydraulic device for three-mode change-over as follows: Deactivate both intake and exhaust valves Select low-speed cam with moderate lifts and short durations Select high-speed cam with high lifts and long durations This mechanism enables shutting off unnecessary cylinders during low-speed cruise, or select optimum valve events during WOT acceleration over the entire engine speed range.
Technical Paper

Technology for Meeting the 1994 USA Exhaust Emission Regulations on Heavy-Duty Diesel Engine

Recent global environmental problems which have come to light must be solved for ensuring the survival of the human race. And it is of the utmost importance that we give to our descendants a world full of nature and beauty. In the past years Mitsubishi Motors Corporation (MMC) has long been positive in research and the development activities so as to satisfy the demands for low emission and good fuel economy vehicles. (1) As one example of our research efforts, the technology that will meet the US '94 HDDE exhaust emission regulations, which is one of the most stringent regulations in the world, is described in this paper. The exhaust emissions were reduced by improvement of combustion, using the pre-stroke control type fuel injection pump and optimizing the combustion chamber shape. Efforts were also made to improve the oil consumption, in order to reduce PM (Particulate Matter) emission.
Technical Paper

Reduction of Cooling Fan Noise Caused by Crankshaft Torsional Vibration

Improvements of interior and exterior noise are important targets in vehicle engineering. There are many reports concerning the reduction of radiator cooling fan noise. But, most of those reports are associated with studies of air flow noise. A radiator cooling fan connected to a crankshaft occasionally radiates structure-borne noise in addition to air flow noise. This structure-borne noise is caused by fan blade vibration excited by torsional vibration of a crankshaft. In this paper, we surveyed the mechanism of the structure-borne noise and discussed some methods for the noise reduction. And, as a result, we developed one of the noise reduction technique aiming at isolation of crankshaft vibration by modifying viscosity of the oil in a fan clutch.
Technical Paper

Contribution of Fuel Transport Lag and Statistical Perturbation in Combustion to Oscillation of SI Engine Speed at Idle

Periodic oscillations of the speed of SI engine with MPI system at idle observed in the steady state and in the converging process after the inditial increase of load were investigated. These non-steady phenomena are the self-excitations of the closed-loop system induced by the lag factors inherent to the system such as the manifold charging delay and the fuel metering and transport lag and by the nonlinear factors such as the sensitivity of the torque to the equivalence ratio. But, even in the cases where the lags and the nonlinearity are insufficient, continuous oscillations with large amplitude are observed in the actual engine. They can be explained by introducing the concept of external perturbation induced by the combustion fluctuation. Disturbance prevents the phase lag in the system from converging, resulting in the continuation of oscillation.
Technical Paper

Ceramic Rocker Arm Insert for Internal Combustion Engines

The adoption of the diesel engine EGR systems, and increased uses of alcohol in spark ignited engines require wear resistant and low maintenance valve trains. Silicon nitride ceramic inserts were pressureless-sintered and successfully die-cast in rocker arms contacting the overhead cams in the valve trains. As fired, the insert sliding surface was fine and precise, eliminating any further processing. The comosite structure was machined with the sliding surface as a reference plane. Beside inherent high wear resistance, these lighter inserts reduced inertial forces of the trains and the torque required to drive the cams. The hard, brittle ceramics and a softer, more elastic aluminum alloy made the structure more durable and reliable. The process of development includes characterization, screening, manufacturing and quality control of the materials, and determination of wear resistance and reliability for this new structure.
Technical Paper

Variable Swirl Inlet System and Its Effect on Diesel Performance and Emissions

A variable swirl inlet system with swirl control subport was developed with consideration of how to control the angular momentum of inlet flow into the cylinder. The effects of swirl on direct injection diesel engine performance and emissions are investigated with this variable swirl system. Basically, lower swirl level reduces the amount of initial stage burning, which is related to NOx emission, maximum cylinder pressure and rate of cylinder pressure rise, over the entire range of engine speed and load. As a result, in high speed range or partial load range, low swirl level simultaneously gives better BSFC and lower NOx level. An intercooled turbocharged engine with this variable swirl inlet system gave higher low-speed torque, higher brake horse power and better cold startability by selection of optimum swirl level for each engine condition.
Technical Paper

Prediction Method of Cooling System Performance

This paper describes a method of predicting cooling performance in order to obtain the optimum design of the cooling system and front-end shape in the early stage of car development. This method consists of four calculation parts: thermal load on the cooling system, air flow through the engine compartment, heat dissipation by the heat exchangers and temperature distribution within the cooling system. It outputs the coolant, engine oil, automatic transmission fluid (A.T.F.) and charge air temperatures in exchange for the input of several car, power plant, drive train, exterior shape and cooling system specifications. For the calculations, in addition to theoretical formulas, several experimental formulas are introduced. This method verification is shown by presenting a few test cases for the respective calculation parts and the final solution.
Technical Paper

Technology for Meeting the 1991 U.S.A. Exhaust Emission Regulations on Heavy Duty Diesel Engine

Protection of the Earth's environment by means of energy saving and cleaning up of air pollution on a global scale is one of the most important subjects in the world today. Because of this, the requirements for better fuel economy and cleaner exhaust emissions of internal combustion engines have been getting stronger, and, in particular, simultaneous reduction in nitrogen oxides (NOx) and particulate matter (PM) from heavy-duty diesel engines (HDDEs) without degrading fuel economy has become a major subject. Mitsubishi Motors Corporation (MM) has been selling diesel-powered heavy-duty trucks in the U.S. market since 1985 and has agressively carried out development work for meeting the 1991 model year exhaust emission standards.
Technical Paper

Mitsubishi New 12.0-Liter Turbocharged and Intercooled Diesel Engine

To meet the increasingly strong demand for high-speed transportation, better fuel economy, higher reliability and the social requirements for more strict Japanese regulations against exhaust and noise emissions, Mitsubishi Motors Corporation has recently developed the 6D40T1 in-line 6-cylinder, 12.0-liter turbocharged and intercooled diesel engine for heavy-duty trucks. This engine meets the 1989 Japanese exhaust emission regulations and has an output of 258 kW. To achieve both fuel economy and good drivability, Mitsubishi's original, electronically-controlled fuel injection system was adopted. The so-called prestroke-controlled fuel injection pump is capable of flexible and precise control of both fuel injection rate and timing. The basic structure of the 6D40T1 was designed with high rigidity to permit high cylinder pressures. In addition, to reduce friction and heat losses, a 4-valve design, roller cam followers with needle roller bearings, and shortened exhaust ports were adopted.
Technical Paper

Effect of Turbulence in Intake Port of MPI Engine on Fuel Transport Phenomena and Nonuniformity of Fuel/Air Mixing in Cylinder

Three zone mixture preparation model, assuming that fuel and air are distributed in three separate zones, fuel air and mixture zone, was proposed. Air Utilization Efficiency derived from the model was used to evaluate the mixing nonuniformity. Effect of the large scale nonisotropic turbulence downstream of the dimple or edge in the intake port of MPI engine on the convective mass transfer from fuel film was clarified by the proposed nondimensional index, Local Sherwood Number. It was found that when the fuel is injected toward the wall where large scale turbulence exists, almost all of the fuel is seeded in the air passing the region at the beginning of the intake process, resulting in the time-resolved nonuniformity of the mixture strength at the intake valve. Using the Air Utilization Efficiency, it was elucidated that time-resolved mixing nonuniformity at intake valves induces spatially nonuniform fuel/air distribution in the cylinder.
Technical Paper

Development of a New Combustion System (MCA-JET) in Gasoline Engine

A new combustion system - called MCA-JET- has been developed to improve combustion under the low speed, low load conditions typical of urban driving. Engines with this new system incorporate a special “jet valve”, in addition to the inlet and exhaust valves of the conventional combustion chamber, which directs air or a super-lean mixture towards the spark plug, and induces a strong swirling flow in the cylinder. This swirl persists during the compression and expansion processes, moves the mixture spirally and helps the flame to propagate. As a result, the combustion of lean mixtures, including those with exhaust gas recirculation, can be carried out rapidly and thus the fuel economy improved.