Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Mixing Control Strategy for Engine Performance Improvement in a Gasoline Direct Injection Engine

1998-02-23
980158
Spray motion visualization, mixture strength measurement, flame spectral analyses and flame behavior observation were performed in order to elucidate the mixture preparation and the combustion processes in Mitsubishi GDI engine. The effects of in-cylinder flow called reverse tumble on the charge stratification were clarified. It preserves the mixture inside the spherical piston cavity, and extends the optimum injection timing range. Mixture strength at the spark plug and at the spark timing can be controlled by changing the injection timing. It was concluded that reverse tumble plays a significant role for extending the freedom of mixing. The characteristics of the stratified charge combustion were clarified through the flame radiation analyses. A first flame front with UV luminescence propagates rapidly and covers all over the combustion chamber at the early stage of combustion.
Technical Paper

Selective Heat Insulation of Combustion Chamber Walls for a DI Diesel Engine with Monolithic Ceramics

1989-02-01
890141
The engine performance and emissions characteristics of a single-cylinder DI diesel engine were experimentally investigated. The combustion chamber walls of the engine were thermally insulated with ceramic materials of SSN (Sintered Silicon Nitride) and PSZ (Partially Stabilized Zirconia). Fuel economy and emissions characteristics were improved by insulating selected locations of the combustion chamber walls. The selective insulation helped to create activated diffusion combustion and resulted in more efficient use of the intake air.
Technical Paper

Technology for Meeting the 1991 U.S.A. Exhaust Emission Regulations on Heavy Duty Diesel Engine

1990-10-01
902233
Protection of the Earth's environment by means of energy saving and cleaning up of air pollution on a global scale is one of the most important subjects in the world today. Because of this, the requirements for better fuel economy and cleaner exhaust emissions of internal combustion engines have been getting stronger, and, in particular, simultaneous reduction in nitrogen oxides (NOx) and particulate matter (PM) from heavy-duty diesel engines (HDDEs) without degrading fuel economy has become a major subject. Mitsubishi Motors Corporation (MM) has been selling diesel-powered heavy-duty trucks in the U.S. market since 1985 and has agressively carried out development work for meeting the 1991 model year exhaust emission standards.
Technical Paper

Technology for Meeting the 1994 USA Exhaust Emission Regulations on Heavy-Duty Diesel Engine

1993-10-01
932654
Recent global environmental problems which have come to light must be solved for ensuring the survival of the human race. And it is of the utmost importance that we give to our descendants a world full of nature and beauty. In the past years Mitsubishi Motors Corporation (MMC) has long been positive in research and the development activities so as to satisfy the demands for low emission and good fuel economy vehicles. (1) As one example of our research efforts, the technology that will meet the US '94 HDDE exhaust emission regulations, which is one of the most stringent regulations in the world, is described in this paper. The exhaust emissions were reduced by improvement of combustion, using the pre-stroke control type fuel injection pump and optimizing the combustion chamber shape. Efforts were also made to improve the oil consumption, in order to reduce PM (Particulate Matter) emission.
Technical Paper

Concept of Lean Combustion by Barrel-Stratification

1992-02-01
920678
A novel leanburn concept, ‘Barrel-Stratification’ is proposed. Fuel is introduced into the cylinder through one of the intake ports of a dual-intake-valve engine of which the tumbling air motion is intensified by the sophisticated intake port design. Because the velocity component in the direction parallel to the axis of tumble is small, charge stratification realized during the intake stroke is maintained until the end of the compression stroke. By the effects of charge stratification and the turbulence enhancement by tumble, stable combustion is realized even at extremely lean conditions. The concept was verified by flow field analysis applying a multi-color laser sheet technique and the flame structure analysis employing the blue-end image intensification realized by the interference mirror and the short delay phosphor.
Technical Paper

Development of Compact, Water-Cooled Engine K2AS

1983-09-12
831300
Mitsubishi has developed the new, compact, water-cooled vertical type 2-cylinder diesel engine model K2AS and brought it to market in spring of '82. The K2AS is a small-sized engine of 451 cc total displacement and 10HP/3600 rpm maximum output. Its weight of 58 kg is light enough to use this diesel engine for various machines which have formerly been driven by gasoline engines. The well matched combustion chamber and injection system realize low fuel consumption, low noise and easy engine starting. High durability is also assured by various kinds of reliability evaluation. Features of K2AS are outlined below.
Technical Paper

Development of a New Combustion System (MCA-JET) in Gasoline Engine

1978-02-01
780007
A new combustion system - called MCA-JET- has been developed to improve combustion under the low speed, low load conditions typical of urban driving. Engines with this new system incorporate a special “jet valve”, in addition to the inlet and exhaust valves of the conventional combustion chamber, which directs air or a super-lean mixture towards the spark plug, and induces a strong swirling flow in the cylinder. This swirl persists during the compression and expansion processes, moves the mixture spirally and helps the flame to propagate. As a result, the combustion of lean mixtures, including those with exhaust gas recirculation, can be carried out rapidly and thus the fuel economy improved.
X