Refine Your Search

Topic

Search Results

Viewing 1 to 13 of 13
Technical Paper

Computational design of commercial vehicle for reconciling aerodynamics and engine cooling performance

2000-06-12
2000-05-0344
As the global environmental protection becomes the world consensus recently, the regulations of the fuel consumption and the exhaust gas have large effects on the performance and the fundamental structure of commercial vehicles. Especially the technology concerning "fluid" and "heat" has a close relationship with those issues. Owing to above circumstances, commercial vehicles such as large trucks and buses are forced to be designed near the limit of allowance. Furthermore, a rapid design is another requirement. However, though significant number of variations, i.e., cab configuration, wheel base, rear body configuration, engine specification, etc., are prepared, it is impossible to improve the performance of all those combinations by experiments which cost a lot. Accordingly, the quantitative prediction using computer will become indispensable at the beginning term of new car development.
Technical Paper

A Study of the Durability of Diesel Oxidation Catalysts

1995-11-01
952650
Diesel emission control is being addressed worldwide to help preserve the global environment. In 1994, emission controls in the U.S. called for reduction of diesel particulate matter (PM) to 10 to 20% of 1986's initial limit. In the same year, we developed and marketed small and medium duty trucks which were equipped with PM reduction systems that oxidize soluble organic fraction (SOF) contained in the PM, in order to satisfy these new regulations. Prior to their marketing, a catalyst was selected from among several types of candidate catalysts. Durability tests were performed using a catalytic converter-equipped small duty truck to verify the durability of the chosen catalyst. The durability test course was set up combining urban areas and expressways in the southern part of California, U.S.A.. The cumulative total distance covered on the test course reached 200,000 km. During the durability test, the catalyst was evaluated by measurement of PM emission using a chassis dynamometer.
Technical Paper

Analysis of Stiffness of Truck Door Panel Effective Arrangement of Stiffeners for Improving Stiffness

1995-11-01
952678
Since it is more difficult for truck door panels to realize curvature than passenger car door panels, internal stiffeners are mounted between the outer panel and inner panel through the use of an adhesive for ensuring stiffness. For this reason, a problem occurs as to the proper placement of the stiffeners so as to effectively improve stiffness. By FEM prediction and experimentation, the following have been clarified: (1) Arrangement of stiffeners for effectively improving stiffness (2) Stiffness share of stiffeners and outer panel against stiffness
Technical Paper

Effects of Shot Peening and Grinding on Gear Strength

1994-03-01
940729
In recent year, higher strength for truck and bus transmission gear has become necessary. For the transmission gears, carburized gears have generally been used. We have examined the effects of shot peening and grinding using a CBN grindstone on the pitting strength and the bending fatigue strength of a carburized gear, and further evaluated a material which reduces the structual anomalies produced during carburization. As a result, it has been found that shot peening or CBN grinding is more effective for improving both pitting strength and bending fatigue strength than improving the material composition. Therefore, it is evident that residual compressive stress caused by shot peening or CBN grinding suppresses the propagation of cracks.
Technical Paper

Four Wheel Steering System for Medium-Duty Trucks

1994-11-01
942310
From the standpoint of safety, the demands are growing in recent years for better controllability and stability of automobiles and in particular in trucks. The truck, however, when compared with the passenger car, is subject to larger changes in gross vehicle mass and center of gravity depending on its load placement. In addition, since the cornering power generated by the truck tire per load is smaller than that generated by the passenger car tire, it is difficult to introduce significant improvements in controllability and stability simply by use of passive techniques like suspension characteristic tuning. Therefore, studies were performed on the applicability of the 4WS system, an active vehicle dynamic characteristic control technique, to a Truck as a means for solving these problems.
Technical Paper

New Mitsubishi V8 20 Liter Diesel Engine

1992-02-01
920085
In the heavy-duty commercial vehicle market in Japan, particularly in the segment of dump trucks and tractors, naturally aspirated engines maintain a dominant market share because of their superior torque characteristics in the low speed range. In order to meet the ever increasing needs for higher speeds of transportation, better fuel economy and higher reliability, and the needs for increasingly strict exhaust emission regulations, Mitsubishi Motors Corporation (MMC) has developed the 8M20, a 20 liter V8 diesel engine. The '92 model series of “THE GREAT”, MMC's main heavy-duty trucks, has featured this new and powerful engine and has been in the market place since October, 1991. The 8M20 is a naturally aspirated engine that provides an output of 294kW/2200rpm, complying with the current Japanese exhaust emission regulations.
Technical Paper

Acoustic Analysis of Truck Cab

1991-05-01
911075
This paper presents the results of acoustic analyses of light duty truck cabs by actual vehicle testing and by numerical analysis utilizing the boundary element method (BEM). In the resonance mode analysis using BEM, by taking into account the vibration characteristics of cab panels, the presence of the modes other than the purely acoustic cavity resonance modes were confirmed. The contribution of the panel vibrations to booming noise that occurs in actual light duty trucks was analyzed. BEM analysis showed that some of the panel vibration had a negative contribution to booming noise. In other words, decreasing vibration in such a section was shown to increase sound pressure. The results of the BEM analysis match well with actual test results. It has thus been demonstrated that BEM is an effective method for analyzing truck interior noise reduction.
Technical Paper

Analysis of Torsional Stiffness Share Rate of Truck Frame

1991-11-01
912676
In order to design a well-balanced truck frame, optimization of not only the stiffness of the entire body and stress of each member, but also the internal force of each member is necessary, including the effect of a rear body mounted on the frame. This paper proposes a new parameter, “torsional stiffness share rate,” that directly correlates the contribution of member torsional stiffness to frame torsional stiffness with the internal force of the members as to torsion of the truck frame. The merits of the torsional stiffness share rate are shown in comparison with the strain energy share rate and the stiffness contribution rate. The results of experimental and FEM analyses of the torsional stiffness share rate are also presented.
Technical Paper

Suppression of Mud Adhesion to the Rear Surface of a Van-Type Truck

1992-02-01
920203
Mud adhesion to the rear surfaces of trucks, vans and buses causes troublesome results such as aesthetic degradation, hindered rear view and laborious washing. To raise the product value of trucks and buses, it is important to develop effective measures for suppressing such mud adhesion. In this research the authors first clarified the mechanism of mud adhesion through flow visualization tests. Then, wind tunnel tests were performed to predict the effects of various countermeasures, and prospective ones were put under actual driving tests to verify their effects. The following measures were found effective in suppressing mud adhesion. (1) Aerodynamic improvement by attaching corner vanes to the upper and side edges of the rear surface. (2) Blocking road splash with a slanted plate under the truck and close to the base.
Technical Paper

Effects of Various Methods for Improving Vehicle Startability and Transient Response of Turbocharged Diesel Trucks

1992-02-01
920044
To improve vehicle startability and transient response of turbocharged diesel trucks, their phenomena have been investigated and analyzed in detail and various supercharging systems have been developed and installed on a truck for comparison of their characteristics. The systems considered were ceramic, variable geometry, variable entry,and air-assisted turbochargers and a combined supercharging system. The variable entry turbocharger has two turbine scrolls with different nozzle areas and two switching valves to get three different turbine flow capacities. The combined supercharging system consists of a mechanical supercharger and a turbocharger. These are linked in series. Both work in a low engine speed range, and the turbocharger only works in middle and high engine speed ranges. Among these systems, the combined supercharging system is the best for improving both vehicle startability and transient response of a truck.
Technical Paper

The Influence of Tire Deformation on Ride Comfort of a Truck

1990-10-01
902268
When truck tires have a deformation such as radial runout, flat spot, and abnormal wear as a result of panic braking, they affect vehicle vibration in the form of displacement input whose spectrum involves higher order terms of tire revolution. While a truck has vibration modes of frame bending as well as pitching and unsprung-mass viberation in the input frequency range, the tire displacement input induces vehicle vibration as a combination of these modes. Results of calculations and experiments of a 4x2 medium-duty truck are analyzed and an example of means for improving ride comfort is described in this paper.
Technical Paper

Combustion Modes of Light Duty Diesel Particulates in Ceramic Filters with Fuel Additives

1986-03-01
860292
Auto-regeneration of diesel particulate traps, particularly combustion mode of soot in a wall flow filter with fuel additives, was investigated using a diesel engine of a light duty truck and truck itself. Soot burning in the trap and regeneration were observed under any engine operating condition including prolonged idling and stop-and-go driving at 0.18g metal/1 dosage of a mixture of copper and lead in the fuels. However, trap life was limited by ash clogging due to the metallic compounds. Although the influence of metallic additives on the environment was debatable, test results of the trap durability and calculations of soot burning based on the thermal ignition theory indicated that dosage and kind of fuel additives should be optimized in view of both trap life and reliability of soot burning.
X