Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Development of Damping SMC and Its Application as Material for a Rockercover

1996-02-01
960146
When replacing a metal engine part with plastic, it is necessary to regard vibration damping as one of the important factors in terms of noise reduction as well as strength and heat resistance as being characteristics of the material. Plastics are far better for vibration damping than steel or aluminum, but this property is reduced by the addition of glassfiber-reinforced or high heat-resisting resins. We have taken notice of SMC (Sheet Molding Compound) which has the excellent strength and heat resistance properties and studied it in order to increase its vibration damping property. Since organic polymers show the peak value for vibration damping performance in the vicinity of the glass transition temperature (Tg), we studied a method to shift the Tg near the operating temperature region in order to improve the vibration damping property.
Technical Paper

Measurement of Structural Attenuation of a Diesel Engine and its Applications for Reduction of Noise and Vibration

1991-11-01
912710
Structural attenuation of a running diesel engine measured by a new technique showed a constant value regardless of engine speeds. It was verified by this result that structural attenuation is a physical quantity unique to the structure of each engine and, therefore, a good indicator for evaluation of low noise engine structure. In addition, a hydraulic excitation test rig was devised to measure structural attenuation directly and to make effective use of it for noise reduction. Based on the accurate measurements by the excitation test rig, modal analysis and system simulation were conducted for implementation of countermeasures against noise.
Technical Paper

Acoustic Analysis of Truck Cab

1991-05-01
911075
This paper presents the results of acoustic analyses of light duty truck cabs by actual vehicle testing and by numerical analysis utilizing the boundary element method (BEM). In the resonance mode analysis using BEM, by taking into account the vibration characteristics of cab panels, the presence of the modes other than the purely acoustic cavity resonance modes were confirmed. The contribution of the panel vibrations to booming noise that occurs in actual light duty trucks was analyzed. BEM analysis showed that some of the panel vibration had a negative contribution to booming noise. In other words, decreasing vibration in such a section was shown to increase sound pressure. The results of the BEM analysis match well with actual test results. It has thus been demonstrated that BEM is an effective method for analyzing truck interior noise reduction.
Technical Paper

Development of a New Torsional Rubber Damper for Diesel Engines

1993-05-01
931308
It is well-known that double-mass torsional rubber dampers which have two masses and springs in parallel are effective for controlling torsional vibration characteristics over a wide range of engine speed. On the occasion of reliability estimation of the rubber dampers, it is important to consider generation of heat in the rubber due to torsional vibration. By predicting generation of heat at the designing stage, optimum design of the torsional rubber dampers can be achieved. By development and application of this prediction method, a new type double-mass damper was developed. It provided higher vibration control characteristics and reliability than conventional viscous dampers, and also it provided advantages in terms of noise, productivity and weight.
Technical Paper

Reduction of Cooling Fan Noise Caused by Crankshaft Torsional Vibration

1993-05-01
931334
Improvements of interior and exterior noise are important targets in vehicle engineering. There are many reports concerning the reduction of radiator cooling fan noise. But, most of those reports are associated with studies of air flow noise. A radiator cooling fan connected to a crankshaft occasionally radiates structure-borne noise in addition to air flow noise. This structure-borne noise is caused by fan blade vibration excited by torsional vibration of a crankshaft. In this paper, we surveyed the mechanism of the structure-borne noise and discussed some methods for the noise reduction. And, as a result, we developed one of the noise reduction technique aiming at isolation of crankshaft vibration by modifying viscosity of the oil in a fan clutch.
Technical Paper

The Influence of Tire Deformation on Ride Comfort of a Truck

1990-10-01
902268
When truck tires have a deformation such as radial runout, flat spot, and abnormal wear as a result of panic braking, they affect vehicle vibration in the form of displacement input whose spectrum involves higher order terms of tire revolution. While a truck has vibration modes of frame bending as well as pitching and unsprung-mass viberation in the input frequency range, the tire displacement input induces vehicle vibration as a combination of these modes. Results of calculations and experiments of a 4x2 medium-duty truck are analyzed and an example of means for improving ride comfort is described in this paper.
Technical Paper

Active Control for Body Vibration of F.W.D. Car

1986-03-01
860552
A Vehicle Vibration Control System by Active Control has been developed. The experimental results using a 4-cylinder gasoline engine installed in a car showed that at the position of the driver's seat, the acceleration of the vibration was reduced by 16 dB. This system operates stably and at low cost because of having a feedforward system, so many applications can be expected in the near future as methods for vehicle vibration reduction.
Technical Paper

Powertrain Model Selection and Reduction for Real Time Control Algorithm Design and Verification in Rapid Controller Prototyping Environment

2010-04-12
2010-01-0236
New systems or functionalities have been rapidly introduced for fuel economy improvement. Active vibration suppression has also been introduced. Control algorithm is required to be verified in real time environment to develop controller functionality in a short term. Required frequency domain property concept is proposed for representation of target phenomena with reduced models. It is shown how to select or reduce engine, transmission and vehicle model based on the concept. Engine torque profile which has harmonics of engine rotation is required for engine start, take-off from stand still, noise & vibration suppression and misfire detection for OBD simulation. An engine model which generates torque profile synchronous to crank angle was introduced and modified for real time simulation environment where load changes dynamically. Selected models and control algorithms were modified for real time environment and implemented into two linked universal controllers.
Technical Paper

Interior Noise evaluation of Electric Vehicle: Noise source contribution analysis

2011-05-17
2011-39-7229
Global environment protection, Co2 emission reduction and so on, is an important problem in automotive industry. An Electric Vehicle (EV) production is one of policies. Co2 emission of EV is lower than Internal Combustion Engine (ICE), petrol and diesel engine. On the other hand, customer's needs for the comfort on driving increase year after year. So it's an important factor for new car performance. Generally speaking, it's thought that the noise and vibration performance of EV have the better of ICE performance. However the aerodynamic noise and road noise contribution for interior noise in EV rise in comparison with ICE, and moreover the sound quality change by new noise component of the motor noise. Therefore new sound evaluation method is needed for EV. So this paper demonstrates each noise component contribution in EV by new noise separation technology, and show the comparison result with EV and ICE.
X