Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Development of the NOx Adsorber Catalyst for Use with High-Temperature Condition

2001-03-05
2001-01-1298
NOx adsorber has already been used for the after-treatment system of series production vehicle installed with a lean burn or direct injection engine [1,2,3]. In order to improve NOx adsorbability at high temperatures, many researchers have recently been trying an addition of potassium (K) as well as other conventional NOx adsorbents. Potassium, however, reacts easily with the cordierite honeycomb substrate at high temperatures, and not only causes a loss in NOx adsorbability but also damages the substrate. Three new technologies have been proposed in consideration of the above circumstances. First, a new concept of K-capture is applied in washcoat design, mixed with zeolite, to improve thermal stability of K and to keep high NOx conversion efficiency, under high temperatures, of NOx adsorber catalyst. Second, another new technology, pre-coating silica over the boundary of a substrate and washcoat, is proposed to prevent the reaction between potassium and cordierite.
Technical Paper

The 1.5-Liter Vertical Vortex Engine

1992-02-01
920670
A stratified-charge lean-burn engine is newly developed for the purpose of energy saving and carbon dioxide reduction to minimize the global warming. The engine, named MVV(Mitsubishi Vertical Vortex)engine, is based on the unique vertical vortex technology which realizes stable combustion even with lean mixture without any additional device. And it also has another feature of “all range air-to-fuel ratio feedback control system” utilizing linear air-to-fuel ratio sensor. This paper describes various technologies developed in this engine.
Journal Article

Keys to Understanding Spray-guided Combustion of a Narrow-spacing Gasoline Direct Injection SI Engine with a Centrally Mounted Multi-hole Injector

2009-04-20
2009-01-1497
Spray-guided gasoline direct injection SI engines attract as one of new generation lean-burn engines to promise CO2 reduction. These typically adopt “narrow-spacing” concept in which an injector is centrally mounted close to a spark plug. Therefore, geometric targets of the fuel spray and a position of the spark plug have to be exactly limited to maintain a proper mixture in the spark gap. In addition, the stable combustion window is narrow because the spark ignition is limited in a short time during and immediately after the injection. These spatial and temporal restrictions involve some intractable problems concerning the combustion robustness due to the complicate phenomena around the spark plug. The local mixture preparation near the spark plug significantly depends on the spray-induced charge motion. The intense flow induced by the motion blows out and stretches the spark, thereby affecting the spark discharge performance.
Technical Paper

Development of Gasoline Direct Injection Engine

1997-02-24
970541
The major problems of the various mixture formation concepts for direct injection gasoline engines that have been proposed up to the present were caused by the difficulties of preparing the mixture with adequate strength at spark plug in wide range of engine operating conditions. Novel combustion control technologies proposed by Mitsubishi is one of the solution for these problems. By adopting upright straight intake ports to generate air tumble, an electromagnetic swirl injector to realize optimized spray dispersion and atomization and a compact piston cavity to maintain charge stratification, it has become possible to achieve super-lean stratified combustion for higher thermal efficiency under partial loads as well as homogeneous combustion to realize higher performance at full loads. GDI™ (Gasoline Direct Injection) engine adopting these technologies is developed. At partial loads, fuel economy improvement exceeding 30 % is realized.
X