Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Development of Damping SMC and Its Application as Material for a Rockercover

1996-02-01
960146
When replacing a metal engine part with plastic, it is necessary to regard vibration damping as one of the important factors in terms of noise reduction as well as strength and heat resistance as being characteristics of the material. Plastics are far better for vibration damping than steel or aluminum, but this property is reduced by the addition of glassfiber-reinforced or high heat-resisting resins. We have taken notice of SMC (Sheet Molding Compound) which has the excellent strength and heat resistance properties and studied it in order to increase its vibration damping property. Since organic polymers show the peak value for vibration damping performance in the vicinity of the glass transition temperature (Tg), we studied a method to shift the Tg near the operating temperature region in order to improve the vibration damping property.
Technical Paper

Collapse of Thin-Walled Curved Beam with Closed-Hat Section - Part 2: Simulation by Plane Plastic Hinge Model

1990-02-01
900461
This paper describes a calculating method to predict the quasi-static collapsing behaviors of spot-welded closed-hat section curved beams under axial compression. The overall deformat ions and the local buckling modes of beams were calculated using a geometrical model. Force-displacement relations were predicted by a elastic-plastic structural analysis method using the ‘plastic hinge’ concept. Collapsing tests were made on beams which are differenting section size, rotation angle, and metal sheet thickness. Comparisons between the calculated and experimental results of deformed shapes of beams, the local buckling modes and the force displacement relations are discussed.
Technical Paper

Energy Absorption by the Plastic Deformation of Body Structural Members

1978-02-01
780368
Vehicle energy in head-on or rear-end collisions is mainly absorbed by the front or rear longitudinal members. This paper describes the methods of calculation of crush load and the energy absorbed during the static and dynamic crush of the sheet metal members with closed-hat section together with attached flanges or walls. Calculated results were compared with experiments including full-size automobile collisions. It is expected that the analysis considering the strain rate sensitivity will provide more accurate design information for improved automobile crash-worthiness.
Technical Paper

A Study on a Simulation of a Head Form Impact Against Plastic Plates

1992-09-01
922085
A Finite Element Method (FEM) simulation was conducted to predict energy-absorbing characteristics in an impact of a head form against plastic plates. Static and dynamic material tests were conducted in order to determine material properties of the plastics. The properties were applied in an explicit FEM code. The FEM results were validated through the impact tests by the head form against the same plastic plates. It was proved that the FEM could simulate the test result well, when the precise material properties were introduced in the simulation. The method can be expected to be available to predict energy-absorbing characteristics during the impact by the head form against automobile plastic components such as shell portions of instrument panels.
Technical Paper

Engine Weight Reduction Using Alternative Light Materials

1992-09-01
922090
This paper presents several methods for reducing engine weight primarily through substitution with light-weight materials. The efficiency and performance of the engine were reviewed using a light-weight experimental engine (hereinafter called “weight-reduced engine”) constructed by the authors in order to investigate the possibility of practical use of the proposed weight reduction measures. The weight-reduced engine is based on an in-line 4-cylinder, 2.0 liter, gasoline engine with the base engine weight of 162 kg excluding engine oil and coolant and was reduced by 37 kg by applying alternative light-weight materiaLs and new manufacturing techniques. This corresponds to 23 % weight reduction. The materials used in the weight-reduced engine are 53 % steel, 33 % aluminum, 7 % plastics and 7 % other light-weight materials. It was found that by application of light-weight materials, the engine performance of the weight-reduced engine could be improved.
X