Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Development of Titanium Alloy Valve Spring Retainers

1991-02-01
910428
Beta Ti alloy valve spring retainers are newly developed for use in mass produced automobiles for the first time. Ti alloy valve spring retainers vith a weight saving of 42%, compared to steel retainers, have reduced the inertial weight of the valve train components by 6%. And this weight reduction has the benefit of increasing the upper limit of the engine speed, which improves the engine performance. Ti alloy valve spring retainers are cold forged by the conventional fabrication facilities for steel retainers, using Ti-22V-4Al (the beta Ti alloy) which possesses excellent cold workability in a solution treated condition. Oxygen surface hardening is applied to protect Ti alloy valve spring retainers from wear damage. In addition, aging treatment and shot blasting are performed to improve strength and stiffness of valve retainers.
Technical Paper

Ceramic Tappets Cast in Aluminum Alloy for Diesel Engines

1990-02-01
900403
The authors developed, for use in diesel engines, ceramic tappets cast in aluminum alloy that drastically improved wear resistance and valve train dynamics. The ceramic tappets consist of two parts: a ceramic head, which contacts the cam and push rod, and a tappet body made of aluminum alloy. Concerning the ceramic, silicon nitride was the best material of the three ceramics evaluated in the tests and the sliding surface, in contact with the cam and push rod, was left unground. As for the aluminum alloy, hyper-eutectic aluminum-silicon alloy with a controlled pro-eutectic silicon size was selected. A reliability analysis using the finite-element method (FEM) was also made on the structure of the ceramic tappet for enhanced durability and reliability. The combination of this tappet and a cam made of hardened ductile cast iron, hardened steel, or chilled cast iron, respectively exhibits excellent wear resistance.
Technical Paper

Soot and Valve Train Wear in Passenger Car Diesel Engines

1983-10-31
831757
The effect of the use of the EGR system on the lubrication of a passenger car diesel engine was investigated. The higher the EGR rate, the more soot in the oil. And the most detrimental effect was found in valve train wear. Some engine tests, including motoring tests, were carried out to investigate the contribution of soot to valve train wear. The mechanism of cam and rocker arm wear in used oils was studied by analyzing for elements on the lubricated metal surface and subsequently the mechanism was more thoroughly studied using the four-ball test. Soot seems to act as an abrasive on the anti-wear solid film formed by the oil on the metal surface and this film contains Ca, O, P and S. Some hardware modifications and oil formulations to reduce valve train wear are also discussed.
Technical Paper

Ceramic Rocker Arm Insert for Internal Combustion Engines

1986-03-01
860397
The adoption of the diesel engine EGR systems, and increased uses of alcohol in spark ignited engines require wear resistant and low maintenance valve trains. Silicon nitride ceramic inserts were pressureless-sintered and successfully die-cast in rocker arms contacting the overhead cams in the valve trains. As fired, the insert sliding surface was fine and precise, eliminating any further processing. The comosite structure was machined with the sliding surface as a reference plane. Beside inherent high wear resistance, these lighter inserts reduced inertial forces of the trains and the torque required to drive the cams. The hard, brittle ceramics and a softer, more elastic aluminum alloy made the structure more durable and reliable. The process of development includes characterization, screening, manufacturing and quality control of the materials, and determination of wear resistance and reliability for this new structure.
X