Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Technical Paper

Mixing Control and Combustion in Gasoline Direct Injection Engines for Reducing Cold-Start Emissions

2001-03-05
2001-01-0550
A two-stage combustion is one of the Mitsubishi GDI™ technologies for a quick catalyst warm-up on a cold-start. However, when the combustion is continued for a long time, an increase in the fuel consumption is a considerable problem. To solve the problem, a stratified slight-lean combustion is newly introduced for utilization of catalysis. The stratified mixture with slightly lean overall air-fuel ratio is prepared by the late stage injection during the compression stroke. By optimizing an interval between the injection and the spark timing, the combustion simultaneously supplies substantial CO and surplus O2 to a catalyst while avoiding the soot generation and the fouling of a spark plug. The CO oxidation on the catalyst is utilized to reduce the cold-start emissions. Immediately after the cold-start, the catalyst is preheated for the minimum time to start the CO oxidation by using the two-stage combustion. Following that, the stratified slight-lean combustion is performed.
Technical Paper

New Mitsubishi 2.8L Four-Cylinder Diesel Engine

1994-03-01
940587
In the light commercial vehicles (LCV) market, primarily cross-country 4-wheel drive station wagons and derived cargo vans, diesel powered vehicles have been gaining popularity among customers because of their increased fuel economy. In the Japanese market particularly, total sales of such types of vehicles have been rapidly growing. The volume is about 3 times larger than the last five years with diesel engines having a steady share of about 90 percent. Under such circumstances the customers' requirements for diesel vehicles are becoming more severe. Their primary demands have been for increased power, low noise, low vibration and clean smoke, similar to those found in gasoline engines. On the other hand, the exhaust gaseous emission regulations of the diesel engines are getting strict and will become very severe in the near future. We, MITSUBISHI MOTORS CORPORATION, have been producing a 2.5 L 4-cylinder diesel, the 4D56 Series, for the LCVs.
Technical Paper

Optimized Gasoline Direct Injection Engine for the European Market

1998-02-23
980150
GDI (Gasoline Direct Injection) engine adopting new combustion control technologies was developed and introduced into Japanese domestic market in August of 1996. In order to extend its application to the European market, various system modifications have been performed. Injectors are located with a smaller angle to the vertical line in order to improve the combustion stability in the higher speed range. A new combustion control method named “two-stage mixing” is adopted to suppress the knock in the low speed range. As a result of this new method, the compression ratio was increased up to 12.5 to 1 while increasing the low-end torque significantly. Taking the high sulfur gasoline in the European market into account, a selective reduction lean-NOx catalyst with improved NOx conversion efficiency was employed. A warm-up catalyst can not be used because the selective reduction lean NOx catalyst requires HC for the NOx reduction.
Technical Paper

New Mitsubishi V8 19-Liter Turbocharged and Intercooled Diesel Engine

1997-05-01
971673
Mitsubishi Motors Corporation (MMC) has developed a new V configured 8 cylinder turbocharged and intercooled diesel engine (8M22T1) for the heavy-duty truck market. The engine is one of the first in its class to feature a common rail fuel injection system. This advanced engine management system was selected to meet the challenges of ever tightening emission regulation, specifically in the areas of smoke and noise. The 8M22T1 embodies a number of design innovations which have resulted in significant improvements in performance, fuel economy, durability and reliability.
Technical Paper

Selective Heat Insulation of Combustion Chamber Walls for a DI Diesel Engine with Monolithic Ceramics

1989-02-01
890141
The engine performance and emissions characteristics of a single-cylinder DI diesel engine were experimentally investigated. The combustion chamber walls of the engine were thermally insulated with ceramic materials of SSN (Sintered Silicon Nitride) and PSZ (Partially Stabilized Zirconia). Fuel economy and emissions characteristics were improved by insulating selected locations of the combustion chamber walls. The selective insulation helped to create activated diffusion combustion and resulted in more efficient use of the intake air.
Technical Paper

Mitsubishi New 12.0-Liter Turbocharged and Intercooled Diesel Engine

1990-09-01
901572
To meet the increasingly strong demand for high-speed transportation, better fuel economy, higher reliability and the social requirements for more strict Japanese regulations against exhaust and noise emissions, Mitsubishi Motors Corporation has recently developed the 6D40T1 in-line 6-cylinder, 12.0-liter turbocharged and intercooled diesel engine for heavy-duty trucks. This engine meets the 1989 Japanese exhaust emission regulations and has an output of 258 kW. To achieve both fuel economy and good drivability, Mitsubishi's original, electronically-controlled fuel injection system was adopted. The so-called prestroke-controlled fuel injection pump is capable of flexible and precise control of both fuel injection rate and timing. The basic structure of the 6D40T1 was designed with high rigidity to permit high cylinder pressures. In addition, to reduce friction and heat losses, a 4-valve design, roller cam followers with needle roller bearings, and shortened exhaust ports were adopted.
Technical Paper

New Mitsubishi V8 20 Liter Diesel Engine

1992-02-01
920085
In the heavy-duty commercial vehicle market in Japan, particularly in the segment of dump trucks and tractors, naturally aspirated engines maintain a dominant market share because of their superior torque characteristics in the low speed range. In order to meet the ever increasing needs for higher speeds of transportation, better fuel economy and higher reliability, and the needs for increasingly strict exhaust emission regulations, Mitsubishi Motors Corporation (MMC) has developed the 8M20, a 20 liter V8 diesel engine. The '92 model series of “THE GREAT”, MMC's main heavy-duty trucks, has featured this new and powerful engine and has been in the market place since October, 1991. The 8M20 is a naturally aspirated engine that provides an output of 294kW/2200rpm, complying with the current Japanese exhaust emission regulations.
Technical Paper

Passenger Car Engines for the 21st Century

1991-09-01
911908
During next decade, automotive engineers will take up unprecedented challenges to meet a variety of technical demands on passenger cars. While performance, refinement and reliability will continue to be major technical goals of passenger cars, reducing their impact on the environment not only in urban areas but also on the global basis will become an increasingly urgent issue. In addition, the need for energy and resources saving will necessitate development of more fuel efficient cars, exploitation of alternative energy and recycled materials. In this paper, the authors will review various alternative engines as candidates to satisfy the above demands. The authors will also discuss various alternative transportation energy sources such as alcoholic fuels, natural gas, hydrogen and electricity. Finally the trends of future passenger car engine design will be discussed.
Technical Paper

Technology for Meeting the 1991 U.S.A. Exhaust Emission Regulations on Heavy Duty Diesel Engine

1990-10-01
902233
Protection of the Earth's environment by means of energy saving and cleaning up of air pollution on a global scale is one of the most important subjects in the world today. Because of this, the requirements for better fuel economy and cleaner exhaust emissions of internal combustion engines have been getting stronger, and, in particular, simultaneous reduction in nitrogen oxides (NOx) and particulate matter (PM) from heavy-duty diesel engines (HDDEs) without degrading fuel economy has become a major subject. Mitsubishi Motors Corporation (MM) has been selling diesel-powered heavy-duty trucks in the U.S. market since 1985 and has agressively carried out development work for meeting the 1991 model year exhaust emission standards.
Technical Paper

Development of a New Multi-Mode Variable Valve Timing Engine

1993-03-01
930878
The 4-stroke SI engine offers better performance if its valve events can be varied depending on the operating conditions. Some engines in production are therefore incorporated with variable valve timing (VVT) mechanisms. All of such mechanisms available today however are for two-mode change-over between low-and high-speed operations. To achieve even better output and fuel economy, a new multi-mode VVT mechanism has been developed, featured by a unique hydraulic device for three-mode change-over as follows: Deactivate both intake and exhaust valves Select low-speed cam with moderate lifts and short durations Select high-speed cam with high lifts and long durations This mechanism enables shutting off unnecessary cylinders during low-speed cruise, or select optimum valve events during WOT acceleration over the entire engine speed range.
Technical Paper

Technology for Meeting the 1994 USA Exhaust Emission Regulations on Heavy-Duty Diesel Engine

1993-10-01
932654
Recent global environmental problems which have come to light must be solved for ensuring the survival of the human race. And it is of the utmost importance that we give to our descendants a world full of nature and beauty. In the past years Mitsubishi Motors Corporation (MMC) has long been positive in research and the development activities so as to satisfy the demands for low emission and good fuel economy vehicles. (1) As one example of our research efforts, the technology that will meet the US '94 HDDE exhaust emission regulations, which is one of the most stringent regulations in the world, is described in this paper. The exhaust emissions were reduced by improvement of combustion, using the pre-stroke control type fuel injection pump and optimizing the combustion chamber shape. Efforts were also made to improve the oil consumption, in order to reduce PM (Particulate Matter) emission.
Technical Paper

Small Engine - Concept Emission Vehicles

1971-02-01
710296
Three Japanese automobile manufacturers-Mitsubishi Motors Corp., Nissan Motor Co., Ltd., and Toyo Kogyo Co., Ltd.-have been making efforts over the past three years to design and develop effective thermal reactor-exhaust gas recirculation and catalytic converter systems suitable for small engines. The work is being done by members participating in the IIEC (Inter-Industry Emission Control) Program, and the exhaust emission levels of the concept vehicles developed by these companies have met the goal established by the IIEC Program at low mileage. Each system, however, has a characteristic relationship between exhaust emission level and loss of fuel economy. Much investigation is required, particularly with respect to durability, before any system that will fully satisfy all service requirements can be completed. This paper reports the progress of research and development of the individual concept vehicles.
Technical Paper

Improvements of Exhaust Gas Emissions and Cold Startability of Heavy Duty Diesel Engines by New Injection-Rate-Control Pump

1986-09-01
861236
In order to investigate the effects of high injection pressure on engine performance and exhaust emissions, some experimental high injection pressure in-line pumps were made and tested. Increasing fuel spray momentum by high injection pressure could reduce smoke emission, but excessive increase in injection pressure was found not so effective in further reducing smoke emission. Accordingly, a high injection pressure should be accomplished within the low engine speed range a feature that has been very difficult to achieve for a conventional in-line pump. An electronic controlled injection-rate-control pump with a variable prestroke mechanism can provide higher injection pressure in low engine speed range and advances injection timing in high engine speed range. This pump can improve fuel economy in low engine speed range and emissions (smoke and particulate) over transient FTP for HDE's.
Technical Paper

Development of a New Combustion System (MCA-JET) in Gasoline Engine

1978-02-01
780007
A new combustion system - called MCA-JET- has been developed to improve combustion under the low speed, low load conditions typical of urban driving. Engines with this new system incorporate a special “jet valve”, in addition to the inlet and exhaust valves of the conventional combustion chamber, which directs air or a super-lean mixture towards the spark plug, and induces a strong swirling flow in the cylinder. This swirl persists during the compression and expansion processes, moves the mixture spirally and helps the flame to propagate. As a result, the combustion of lean mixtures, including those with exhaust gas recirculation, can be carried out rapidly and thus the fuel economy improved.
Technical Paper

A Study of Friction Reduction by ‘Soft Skirt’ Piston

2011-08-30
2011-01-2120
To reduce friction is required to improve engine fuel economy. This study aimed to reduce piston skirt friction, which is a major factor in engine friction. ‘Soft skirt’ is a trendy item in recent gasoline engines, which can improve skirt sliding condition by larger deformation when the piston is pressed to the liner. The effect is confirmed by friction measurement and oil film observation, using prototype pistons. And also one major factor of the effect is clarified that not only side force but also cylinder pressure causes effective deformation of the skirt to create thick oil film at early combustion stroke.
Technical Paper

Powertrain Model Selection and Reduction for Real Time Control Algorithm Design and Verification in Rapid Controller Prototyping Environment

2010-04-12
2010-01-0236
New systems or functionalities have been rapidly introduced for fuel economy improvement. Active vibration suppression has also been introduced. Control algorithm is required to be verified in real time environment to develop controller functionality in a short term. Required frequency domain property concept is proposed for representation of target phenomena with reduced models. It is shown how to select or reduce engine, transmission and vehicle model based on the concept. Engine torque profile which has harmonics of engine rotation is required for engine start, take-off from stand still, noise & vibration suppression and misfire detection for OBD simulation. An engine model which generates torque profile synchronous to crank angle was introduced and modified for real time simulation environment where load changes dynamically. Selected models and control algorithms were modified for real time environment and implemented into two linked universal controllers.
Technical Paper

Development of High Performance Heavy-Duty Diesel Engine Oil to Extend Oil Drain Intervals: 5W30 Fully Synthetic Oil Containing MoDTC

2000-06-19
2000-01-1992
In this study, the oxidation stability, soot dispersancy, antiwear performance, and friction-reducing capability of friction modifiers (FMs) were evaluated, and an SAE 5W-30 fully synthetic oil with MoDTC type FMs was developed for heavy-duty diesel engines. In several engine tests, it was confirmed that the developed oil can double the oil drain interval in comparison with API CD SAE 30, even when EGR is applied, and improves the fuel efficiency.
Technical Paper

Development of Gasoline Direct Injection Engine

1997-02-24
970541
The major problems of the various mixture formation concepts for direct injection gasoline engines that have been proposed up to the present were caused by the difficulties of preparing the mixture with adequate strength at spark plug in wide range of engine operating conditions. Novel combustion control technologies proposed by Mitsubishi is one of the solution for these problems. By adopting upright straight intake ports to generate air tumble, an electromagnetic swirl injector to realize optimized spray dispersion and atomization and a compact piston cavity to maintain charge stratification, it has become possible to achieve super-lean stratified combustion for higher thermal efficiency under partial loads as well as homogeneous combustion to realize higher performance at full loads. GDI™ (Gasoline Direct Injection) engine adopting these technologies is developed. At partial loads, fuel economy improvement exceeding 30 % is realized.
X