Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Optimization of Catalytic Converter Location Achieved with a Curve Catalytic Honeycomb Substrate

1994-03-01
940743
A new type of catalytic converter has been developed for the coming TLEV (Transitional Low Emission Vehicle) standards. It is a “Front Curve Catalytic Converter (FCCC)” using a curved cordierite ceramic honeycomb substrate. During this development, an optimum location and volume of the front curve catalytic converter were determined from the view points of thermal deterioration of the catalyst and hydrocarbon conversion performance. Based on CAE (Computer Aided Engineering) analysis, the best curvature radius of the substrate was selected to minimize a pressure drop of the front curve catalytic converter. The emission conversion and light-off performances of the front curve catalytic converter were compared with a conventional straight design. A series of durability tests; hot vibration, engine dynamometer and vehicle fleet tests were also conducted to confirm the reliability of the new front curve catalytic converter.
Technical Paper

Ceramic Rocker Arm Insert for Internal Combustion Engines

1986-03-01
860397
The adoption of the diesel engine EGR systems, and increased uses of alcohol in spark ignited engines require wear resistant and low maintenance valve trains. Silicon nitride ceramic inserts were pressureless-sintered and successfully die-cast in rocker arms contacting the overhead cams in the valve trains. As fired, the insert sliding surface was fine and precise, eliminating any further processing. The comosite structure was machined with the sliding surface as a reference plane. Beside inherent high wear resistance, these lighter inserts reduced inertial forces of the trains and the torque required to drive the cams. The hard, brittle ceramics and a softer, more elastic aluminum alloy made the structure more durable and reliable. The process of development includes characterization, screening, manufacturing and quality control of the materials, and determination of wear resistance and reliability for this new structure.
X