Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

A Keynote on Future Combustion Engines

2001-03-05
2001-01-0248
A characteristic mechanism of in-cylinder combustion is “time-domain mixing” which mixes up unburned gas, products in the different stages of combustion process, and burned gas, by “eddy”, a flow component with its scales of several to 10 mm. It seems to play a role in completing the combustion. Now that direct injection is a central engine technology, a keyword to combustion control is “freedom of mixing”, that is, no restriction on mixture formation, realized by direct injection. Various kinds of combustion control technologies utilizing it, have been presented. After combustion control for a premixed leanburn gasoline engine, and a direct injection gasoline engine, was achieved by turbulence control, and mixing control, respectively, the next target of combustion control will be ignition control. It will be possible, by controlling some boundary condition on combustion and fuel chemistry. Time-domain mixing and freedom of mixing will support it.
Technical Paper

Small Engine - Concept Emission Vehicles

1971-02-01
710296
Three Japanese automobile manufacturers-Mitsubishi Motors Corp., Nissan Motor Co., Ltd., and Toyo Kogyo Co., Ltd.-have been making efforts over the past three years to design and develop effective thermal reactor-exhaust gas recirculation and catalytic converter systems suitable for small engines. The work is being done by members participating in the IIEC (Inter-Industry Emission Control) Program, and the exhaust emission levels of the concept vehicles developed by these companies have met the goal established by the IIEC Program at low mileage. Each system, however, has a characteristic relationship between exhaust emission level and loss of fuel economy. Much investigation is required, particularly with respect to durability, before any system that will fully satisfy all service requirements can be completed. This paper reports the progress of research and development of the individual concept vehicles.
Technical Paper

Multi Layered Zirconia Oxygen Sensor with Modified Rhodium Catalyst Electrode

1988-02-01
880557
This paper describes the design and operation of the multi-layered zirconia heated exhaust gas oxygen sensor having small-sized and sheet-shaped sensing element. This sensor uses an electrode modified with a rhodium catalyst and heater by means of the thick-film technique. This modification of an electrode's composition and construction affects the reaction on unburned components in exhaust gas as well as the sensor performance. By the addition of a rhodium catalyst, the zirconia exhaust gas oxygen sensor shows acute sensitivity and faster response properties in the transient state on emission component(NOx) generation, in such a way that these sensors show better emission control properties for reduction of NOx emission in current emission control systems. The addition of a rhodium catalyst reduces the green effect of sensor properties, and no significant change of emission control properties is observed after 50,000 equivalent miles using the engine dynamometer durability test.
Technical Paper

Hot-Gas Spin Testing of Ceramic Turbine Rotor at TIT 1300° C

1989-02-01
890427
The high-temperature durability of 85 mm tip diameter silicon nitride ceramic radial turbine rotors was evaluated with a hot gas spin test rig. The rotors withstood up to a turbine tip speed of 700 m/s at TIT of 1300°C under partially loaded conditions and 570 m/s at TIT of 1300°C under fully loaded conditions, respectively. The material of the rotors was a post-HIPed silicon nitride. The basic fatigue properties of the material were measured at high temperatures. In the hot gas spin test, the temperature and stress distributions at the turbine blade were calculated with a finite element method. The results of the hot-gas spin test are discussed by means of a failure prediction analysis on the basis of the Weibull statistics.
Technical Paper

Accuracy of A/F Calculation from Exhaust Gas Composition of SI Engines

1989-09-01
891971
The accuracy of real-time A/F measurement at engine test benches has been improved with a modified equation to calculate A/F from exhaust gas composition. In addition to CO, CO2, total hydrocarbon (THC) and O2, the proposed equation includes NO and NO2 concentration as variables. In an attempt to improve the accuracy of the assumed constants in the equation, experiments have been conducted using automotive exhaust H2O and H2 analyzers. The accuracy of the proposed equation was proven through experiments and it was also found useful for precise evaluation of three-way catalyst or oxygen sensor characteristics.
Technical Paper

Utilization of Advanced Three-Way Catalyst Formulations on Ceramic Ultra Thin Wall Substrates for Future Legislation

2002-03-04
2002-01-0349
The LEV II and SULEV/PZEV emission standards legislated by the US EPA and the Californian ARB will require continuous reduction in the vehicles' emission over the next several years. Similar requirements are under discussion in the European Union (EU) in the EU Stage V program. These future emission standards will require a more efficient after treatment device that exhibits high activity and excellent durabilty over an extended lifetime. The present study summarizes the findings of a joint development program targeting such demanding future emission challenges, which can only be met by a close and intensive co-operation of the individual expert teams. The use of active systems, e.g. HC-adsorber or electrically heated light-off catalysts, was not considered in this study. The following parameters were investigated in detail: The development of a high-tech three-way catalyst technology is described being tailored for applications on ultra thin wall ceramic substrates (UTWS).
Journal Article

Development of a Ceramic EHC

2022-03-29
2022-01-0536
In recent years, electrically heated catalysts (EHCs) have been developed to achieve lower emissions. In several EHC heating methods, the direct heating method, which an electric current is applied directly to the catalyst substrate, can easily activate the catalyst before engine start-up. The research results reported on the use of the direct heating EHC to achieve significant exhaust gas purification during cold start-up [1]. From the perspective of catalyst loading, ceramics is considered to be a better material for the substrate than metal due to the difference in coefficient of thermal expansion between the catalyst and the substrate, but the EHC made of ceramics has difficulties such as controllability of the current distribution, durability and reliability of the connection between the substrate and the electrodes.
X