Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Transient Conjugate CFD Simulation of the Radiator Thermal Cycle

Demand for a high thermal performance heat exchanger with good durability in a small packaging space can be very challenging. For the durability testing, the typical thermal cycle test in the lab with the fixed temperature cycles can be very time consuming and costly. In order to shorten the product development time and cost, CAE tools have been explored for the radiator thermal cycle simulation. Due to the nature of the most common failure mode, it is imperative to develop reliable methodologies so that the transient temperature, stress, and corresponding fatigue life for the product can be predicted. This paper focuses on the prediction of the metal temperature during the radiator thermal cycle using computational fluid dynamics (CFD) with conjugate heat transfer. To verify the developed temperature prediction method in CFD, thermal cycle tests were performed for three radiator samples. The test procedure and some of the test results are reviewed.
Technical Paper

Evaluation of the Multiple Reference Frame (MRF) Model in a Truck Fan Simulation

A multiple reference frame (MRF) model was developed by Gosman [1] for the prediction of flow fields induced by impellers in mixing vessels. The simulation results using this approach agree with the test data reasonably well if certain conditions exist. Many CFD engineers have adopted this approach to simulate the fan performance for automotive powertrain cooling simulations [4]. This paper describes the authors' experience using the MRF model in truck fan simulations. For the fan performance studies with a plate shroud, CFD simulation results with different sizes of rotating zones were compared with the test data. Very good agreement between the CFD simulation and the test data with plate shroud can be achieved if a properly sized rotating zone is selected. For the fan performance studies with a real shroud, a simple piece of plywood was used to mimic the engine blockage and the MRF model with one fixed-size rotation zone was used for the CFD simulation.
Technical Paper

Improved Plastic Radiator Tank Attachment Method

Automotive and radiator manufacturing companies are currently using several methods for attaching plastic radiator tanks to metal core assemblies. Recently, an improved plastic tank attachment method was developed. It performs as well or better than other systems and is also less complicated to manufacture. This system, named the “HSK” method, can be used on copper/brass cores as well as aluminum cores. This paper will describe the functional and manufacturing advantages of the “HSK” plastic tank attachment method.
Technical Paper

Heavy Truck Cooling Systems

In 1967, Mr. P. Beatenbough presented the Thirteenth L. Ray Buckendale Lecture. The subject of his presentation was Engine Cooling Systems for Motor Trucks. In the twenty three years that have elapsed since that paper was presented, many significant advances have occurred in the field of engine cooling. This paper will explore those developments as well as discuss the functional issues involved in heavy truck cooling system design. Fundamental engineering concepts will be presented as well as simple conceptual models. Broad directions are suggested.