Refine Your Search

Search Results

Journal Article

On the Nature of Particulate Emissions from DISI Engines at Cold-Fast-Idle

2014-04-01
2014-01-1368
Particulate emissions from a production gasoline direct injection spark ignition engine were studied under a typical cold-fast-idle condition (1200 rpm, 2 bar NIMEP). The particle number (PN) density in the 22 to 365 nm range was measured as a function of the injection timing with single pulse injection and with split injection. Very low PN emissions were observed when injection took place in the mid intake stroke because of the fast fuel evaporation and mixing processes which were facilitated by the high turbulent kinetic energy created by the intake charge motion. Under these conditions, substantial liquid fuel film formation on the combustion chamber surfaces was avoided. PN emissions increased when injection took place in the compression stroke, and increased substantially when the fuel spray hit the piston.
Technical Paper

The Effect of Operating Conditions at Idle in the S.I. Engine

1997-10-01
972990
A gasoline engine with an electronically controlled fuel injection system has substantially better fuel economy and lower emissions than a carburetted engine. In general, the stability of engine operation is improved with fuel injector, but the stability of engine operation at idle is not improved compared with a carburetted gasoline engine. In addition, the increase in time that an engine is at idle due to traffic congestion has an effect on the engine stability and vehicle reliability. Therefore, in this research, we will study the influence of fuel injection timing, spark timing, dwell angle, and air-fuel ratio on engine stability at idle.
Technical Paper

Early Spray Development in Gasoline Direct-Injected Spark Ignition Engines

1998-02-23
980160
The characteristics of the early development of fuel sprays from pressure swirl atomizer injectors of the type used in direct injection gasoline engines is investigated. Planar laser-induced fluorescence (PLIF) was used to visualize the fuel distribution inside a firing optical engine. The early spray development of three different injectors at three different fuel pressures (3, 5, and 7 MPa) was followed as a function of time in 30 μsec intervals. Four phases could be identified: 1) A delay phase between the rising edge of the injection pulse and the first occurrence of fuel in the combustion chamber, 2) A solid jet or pre-spray phase, in which a poorly atomized stream of liquid fuel during the first 150 μsec of the injection. 3) A wide hollow cone phase, separation of the liquid jet into a hollow cone spray once sufficient tangential velocity has been established and 4) A fully developed spray, in which the spray cone angle is narrowed due to a low pressure zone at the center.
Technical Paper

Liquid Fuel Visualization Using Laser-Induced Fluoresence During Cold Start

1998-10-19
982466
The presence of liquid fuel inside the engine cylinder is believed to be a strong contributor to the high levels of hydrocarbon emissions from spark ignition (SI) engines during the warm-up period. Quantifying and determining the fate of the liquid fuel that enters the cylinder is the first step in understanding the process of emissions formation. This work uses planar laser induced fluorescence (PLIF) to visualize the liquid fuel present in the cylinder. The fluorescing compounds in indolene, and mixtures of iso-octane with dopants of different boiling points (acetone and 3-pentanone) were used to trace the behavior of different volatility components. Images were taken of three different planes through the engine intersecting the intake valve region. A closed valve fuel injection strategy was used, as this is the strategy most commonly used in practice. Background subtraction and masking were both performed to reduce the effect of any spurious fluorescence.
Technical Paper

Piston Fuel Film Observations in an Optical Access GDI Engine

2001-05-07
2001-01-2022
A gasoline direct injection fuel spray was observed using a fired, optical access, square cross-section single cylinder research engine and high-speed video imaging. Spray interaction with the piston is described qualitatively, and the results are compared with Computational Fluid Dynamics (CFD) simulation results using KIVA-3V version 2. CFD simulations predicted that within the operating window for stratified charge operation, between 1% and 4% of the injected fuel would remain on the piston as a liquid film, dependent primarily on piston temperature. The experimental results support the CFD simulations qualitatively, but the amount of fuel film remaining on the piston appears to be under-predicted. High-speed video footage shows a vigorous spray impingement on the piston crown, resulting in vapor production.
Technical Paper

An Experimental Study on Phenomena of Piston Ring Collapse

2002-03-04
2002-01-0483
This study has been conducted aiming at an experimental verification of the ring collapse phenomena that occurs in a taper faced second ring of a direct fuel injection type truck diesel engine. The oil film thickness of the second ring, the ring axial motion and the inter-ring pressure have been measured under various operating conditions of engine. As a result, it is verified that the back pressure of the second ring becomes lower than the second land pressure, and that the second ring oil film becomes extremely thick temporarily where the second ring contacts with the ring groove upper surface. It is also verified that blow-by passes through the second ring where the oil film of the second ring becomes thick. Hence it is highly probable that the collapse of the second ring has occurred at that time.
Technical Paper

Fuel Effects on HCCI Operation in a Spark Assisted Direct Injection Gasoline Engine

2011-08-30
2011-01-1763
The fuel effects on HCCI operation in a spark assisted direct injection gasoline engine are assessed. The low load limit has been extended with a pilot fuel injection during the negative valve overlap (NVO) period. The fuel matrix consists of hydrocarbon fuels and various ethanol blends and a butanol blend, plus fuels with added ignition improvers. The hydrocarbon fuels and the butanol blend do not significantly alter the high or the low limits of operation. The HCCI operation appears to be controlled more by the thermal environment than by the fuel properties. For E85, the engine behavior depends on the extent that the heat release from the pilot injected fuel in the NVO period compensates for the evaporative cooling of the fuel.
Technical Paper

A Comparative Study on Different Dual-Fuel Combustion Modes Fuelled with Gasoline and Diesel

2012-04-16
2012-01-0694
Comparisons have been made between dual-fuel (80% port-injection gasoline and 20% direct-injection diesel by mass) Highly Premixed Charge Combustion (HPCC) and blended-fuel (80% gasoline and 20% diesel) Low Temperature Combustion (LTC) modes on a 1-L single-cylinder test engine. In the HPCC mode, both early-injection (E-HPCC) and late-injection (L-HPCC) of diesel have been used. The comparisons have been conducted with a fixed fuel injection rate of 50 mg/cycle at 1500 rpm, and with the combustion phasing fixed (by adjusting the injection timing) so that the 50% heat release point (CA50) is at 8° ATDC. The rapid heat release process of LTC leads to the highest maximum pressure rise rate (MPRR). A two-peak heat release process is observed in L-HPCC, resulting in a lower MPRR. The heat release rate and MPRR values for the E-HPCC are comparable to the L-HPCC values. The EHPCC mode provides the lowest NOX emission. The soot emissions for all three modes are low.
Technical Paper

Modeling the Evolution of Fuel and Lubricant Interactions on the Liner in Internal Combustion Engines

2018-04-03
2018-01-0279
In internal combustion engines, a portion of liquid fuel spray may directly land on the liner and mix with oil (lubricant), forming a fuel-oil film (~10μm) that is much thicker than the original oil film (~0.1μm). When the piston retracts in the compression stroke, the fuel-oil mixture may have not been fully vaporized and can be scraped by the top ring into the 1st land crevice and eventually enter the combustion chamber in the format of droplets. Studies have shown that this mechanism is possibly a leading cause for low-speed pre-ignition (LSPI) as the droplets contain oil that has a much lower self-ignition temperature than pure fuel. In this interest, this work aims to study the oil-fuel interactions on the liner during an engine cycle, addressing molecular diffusion (in the liquid film) and vaporization (at the liquid-gas interface) to quantify the amount of fuel and oil that are subject to scraping by the top ring, thereby exploring their implications on LSPI and friction.
Technical Paper

Visualization of Mixture Preparation in a Port-Fuel Injection Engine During Engine Warm-up

1995-10-01
952481
The fuel injection process in the port of a firing 4-valve SI engine at part load and 25°C head temperature was observed by a high speed video camera. Fuel was injected when the valve was closed. The reverse blow-down flow when the intake valve opens has been identified as an important factor in the mixture preparation process because it not only alters the thermal environment of the intake port, but also strip-atomizes the liquid film at the vicinity of the intake valve and carries the droplets away from the engine. In a series of “fuel-on” experiments, the fuel injected in the current cycle was observed to influence the fuel delivery to the engine in the subsequent cycles.
Technical Paper

Photographic and Performance Studies of Diesel Combustion With a Rapid Compression Machine

1974-02-01
740948
Photographic and performance studies with a Rapid Compression Machine at the Massachusetts Institute of Technology have been used to develop insight into the role of mixing in diesel engine combustion. Combustion photographs and performance data were analyzed. The experiments simulate a single fuel spray in an open chamber diesel engine with direct injection. The effects of droplet formation and evaporation on mixing are examined. It is concluded that mixing is controlled by the rate of entrainment of air by the fuel spray rather than the dynamics of single droplets. Experimental data on the geometry of a jet in a quiescent combustion chamber were compared with a two-phase jet model; a jet model based on empirical turbulent entrainment coefficients was developed to predict the motion of a fuel jet in a combustion chamber with swirl. Good agreement between theory and experiment was obtained.
Technical Paper

A Performance Model for the Texaco Controlled Combustion, Stratified Charge Engine

1976-02-01
760116
A model has been developed to predict the performance of the Texaco Controlled Combustion, Stratified Charge Engine starting from engine geometry, fuel characteristics and the operating conditions. This performance model divides the engine cycle into the following phases: Intake, Compression, Rapid Combustion, Mixing-Dominated Expansion, Heat-Transfer Dominated Expansion and Exhaust. During the rapid combustion phase, the rate of heat release is assumed to be controlled by the rate of fuel injection and the air-to-fuel ratio. The burning rate in the mixing controlled stage appears to be dominated by the rate of entrainment of the surrounding gas by the plume of burning products and this rate is assumed to be controlled by the turbulent eddy entrainment velocity. A plume geometry model has been developed to obtain the surface area of the plume for entrainment during the mixing dominated phase.
Technical Paper

Fuel-Air Mixing and Diesel Combustion in a Rapid Compression Machine

1988-02-01
880206
The influence of charge motion and fuel injection characteristics on diesel combustion was studied in a rapid compression machine (RCM), a research apparatus that simulates the direct-injection diesel in-cylinder environment. An experimental data base was generated in which inlet air flow conditions (temperature, velocity, swirl level) and fuel injection pressure were independently varied. High-speed movies using both direct and shadowgraph photography were taken at selected operating conditions. Cylinder pressure data were analyzed using a one-zone heat release model to calculate ignition delay times, premixed and diffusion burning rates, and cumulative heat release profiles. The photographic analysis provided data on the liquid and vapor penetration rates, fuel-air mixing, ignition characteristics, and flame spreading rates.
Technical Paper

Heat Transfer Characteristics of Impinging Diesel Sprays

1989-02-01
890439
The heat transfer characteristics of impinging diesel sprays were studied in a Rapid Compression Machine. The temporal and spatial distributions of the heat transfer around the impingement point -were measured by an array of high frequency response surface thermocouples. Simultaneously, the flow field of the combusting spray was photographed with high speed movie through the transparent head of the apparatus. The results for the auto-ignited fuel sprays were compared to those of non-combusting sprays which were carried out in nitrogen. The values of the heat flux from the combusting sprays were found to be substantially different from those of the non-combusting sprays. The difference was attribute to the radiative heat transfer and the combustion generated bulk, motion and small scale turbulence.
Technical Paper

Characteristics of Combustion Pressure Vibration in Hydrogen Fuel Injection Hot Surface Ignition Engines

1987-09-01
871611
In high pressure hydrogen injection hot surface ignition engines under nearly all engine operating conditions combustion pressure vibration is generated just after ignition. As a result of many experimental investigations the true nature for the cause of this interesting phenomenon was found and are listed: (1) This phenomenon probably originates from the extremely high local rate of burning of the hydrogen-air mixture. (2) Accompaning the stronger combustion pressure vibration was an increase in engine vibration and noise with increase in NOx emission and higher piston temperature. (3) Longer ignition delay resulted in a steeper pressure-time diagram which resalted in a stronger combustion pressure vibration. (4) The phenomenon had negligible effect on engine performance. (5) The phenomenon can be prevented by premixing a ceratain quantity of hydrogen gas into the intake air stream. The result was a shortened ignition delay.
Technical Paper

Mixture Preparation in a SI Engine with Port Fuel Injection During Starting and Warm-Up

1992-10-01
922170
The in-cylinder hydrocarbon (HC) mole fraction was measured on a cycle-resolved basis during simulated starting and warm-up of a port-injected single-cylinder SI research engine on a dynamometer. The measurements were made with a fast-response flame ionization detector with a heated sample line. The primary parameters that influence how rapidly a combustible mixture builds up in the cylinder are the inlet pressure and the amount of fuel injected; engine speed and fuel injection schedule have smaller effects. When a significant amount of liquid fuel is present at the intake port in the starting process, the first substantial firing cycle is often preceded by a cycle with abnormally high in-cylinder HC and low compression pressure. An energy balance analysis suggests that a large amount of liquid vaporization occurs within the cylinder in this cycle.
Technical Paper

A Study of Heat Rejection and Combustion Characteristics of a Low-temperature and Pre-mixed Combustion Concept Based on Measurement of Instantaneous Heat Flux in a Direct-Injection Diesel Engine

2000-10-16
2000-01-2792
There have been strong demands recently for reductions in the fuel consumption and exhaust emissions of diesel engines from the standpoints of conserving energy and curbing global warming. A great deal of research is being done on new emission control technologies using direct-injection (DI) diesel engines that provide high thermal efficiency. This work includes dramatic improvements in the combustion process. The authors have developed a new combustion concept called Modulated Kinetics (MK), which reduces smoke and NOx levels simultaneously by reconciling low-temperature combustion with pre-mixed combustion [1, 2]. At present, research is under way on the second generation of MK combustion with the aim of improving emission performance further and achieving higher thermal efficiency [3]. Reducing heat rejection in the combustion chamber is effective in improving the thermal efficiency of DI diesel engines as well as that of MK combustion.
Technical Paper

Numerical Modeling of Fuel Sprays in DISI Engines Under Early-Injection Operating Conditions

2000-03-06
2000-01-0273
Numerical calculations of the fuel spray structure from a high-pressure swirl injector were used to enable the interpretation of experimental observations obtained in hot, hollow-cone fuel sprays issued into sub-atmospheric-pressure environments. The experiments show that the spray becomes narrower, more compact, but with a relatively long penetration depth. Model input parameters, including the droplet size distribution, early vapor production, and initial cone angle, were modified to determine which spray characteristics are important in recreating observed spray structures. A very small mean droplet diameter is needed to recreate the experimentally observed structure of the high-temperature, low-pressure sprays. Vapor addition to the emerging spray is then required to increase the axial penetration and provide the observed vapor core.
Technical Paper

Particulate Matter Emission During Start-up and Transient Operation of a Spark-Ignition Engine

1999-10-25
1999-01-3529
In order to understand why emissions of Particulate Matter (PM) from Spark-Ignition (SI) automobiles peak during periods of transient operation such as rapid accelerations, a study of controlled, repeatable transients was performed. Time-resolved engine-out PM emissions from a modern four-cylinder engine during transient load and air/fuel ratio operation were examined, and the results could be fit in most cases to a first order time response. The time constants for the transient response are similar to those measured for changes in intake valve temperature, reflecting the strong dependence of PM emissions on the amount of liquid fuel in the combustion chamber. In only one unrepeatable case did the time response differ from a first order function: showing an overshoot in PM emissions during transition from the initial to the final steady state PM emission level.
Technical Paper

Effects of Fuel Volatility and Operating Conditions on Fuel Sprays in DISI Engines: (2) PDPA Investigation

2000-03-06
2000-01-0536
Optimal design of modern direct injection spark-ignition engines depends heavily on the characteristics and distribution of the fuel spray. This study was designed to compliment imaging experiments of changes in the spray structure due to fuel volatility and operating conditions. Use of phase-Doppler particle analysis (PDPA) allows quantitative point measurements of droplet diameter and velocity. In agreement with imaging experiments, the results show that the spray structure changes not only with ambient gas density, which is often measured, but also with fuel temperature and volatility. The mean droplet diameter was found to decrease substantially with increasing fuel temperature and decreasing ambient density. Under conditions of low potential for vaporization, the observed trends in mean droplet sizes agree with published correlations for pressure-swirl atomizers.
X