Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Computer Aiding for Low-Altitude Flight Simulation to Flight: A Case Study

NASA and the U.S. Army have designed, developed, and tested a Computer Aiding for Low-Altitude Helicopter Flight guidance system. This system provides guidance to the pilot for near-terrain covert helicopter operations. The guidance is presented to the pilot through symbology on a helmet mounted display. This system has demonstrated the feasibility of a pilot-centered concept of terrain flight guidance that preserves pilot flexibility and authority. The system was developed using extensive piloted simulation and then implemented in a UH-60 Blackhawk helicopter for flight development and evaluation. A close correlation between simulation and actual flight was found; however, in flight overall pilot workload increased and performance decreased. This paper presents a description of the basic system design, simulation, and flight evaluations.
Technical Paper

VTOL Flight Investigation to Develop a Decelerating Instrument Approach Capability

The inability of available situation displays to provide a decelerating instrument approach capability to a hover led to a flight research program in which control-command information was displayed for three degrees of freedom. The test aircraft (NASA's CH-46C in-flight simulator) was stabilized with high-gain attitude command system. Using this system, the pilot was able to decelerate the aircraft to a hover while simultaneously following a 6 deg glidepath. Although these tests demonstrate the potential of this concept, a number of factors, including adequate integration of command and situation information, were identified as affecting pilot acceptance of the system.
Technical Paper

Development Status of Amine-based, Combined Humidity, CO2 and Trace Contaminant Control System for CEV

Under a NASA-sponsored technology development project, a multi-disciplinary team consisting of industry, academia, and government organizations lead by Hamilton Sundstrand is developing an amine-based humidity and CO2 removal process and prototype equipment for Vision for Space Exploration (VSE) applications. Originally this project sought to research enhanced amine formulations and incorporate a trace contaminant control capability into the sorbent. In October 2005, NASA re-directed the project team to accelerate the delivery of hardware by approximately one year and emphasize deployment on board the Crew Exploration Vehicle (CEV) as the near-term developmental goal. Preliminary performance requirements were defined based on nominal and off-nominal conditions and the design effort was initiated using the baseline amine sorbent, SA9T.
Technical Paper

Toward Human-Robot Interface Standards: Use of Standardization and Intelligent Subsystems for Advancing Human-Robotic Competency in Space Exploration

NASA's plans to implement the Vision for Space Exploration include extensive human-robot cooperation across an enterprise spanning multiple missions, systems, and decades. To make this practical, strong enterprise-level interface standards (data, power, communication, interaction, autonomy, and physical) will be required early in the systems and technology development cycle. Such standards should affect both the engineer and operator roles that humans adopt in their interactions with robots. For the engineer role, standards will result in reduced development lead-times, lower cost, and greater efficiency in deploying such systems. For the operator role, standards will result in common autonomy and interaction modes that reduce operator training, minimize workload, and apply to many different robotic platforms. Reduced quantities of spare hardware could also be a benefit of standardization.
Technical Paper

Agent Architecture for Aviation Data Integration System

Aviation Data Integration System (ADIS) project explores methods and techniques for integrating heterogeneous aviation data to support aviation problem-solving activity. Aviation problem-solving activities include: engineering troubleshooting, incident and accident investigation, routine flight operations monitoring, flight plan deviation monitoring, safety assessment, maintenance procedure debugging, and training assessment. To provide optimal quality of service, ADIS utilizes distributed intelligent agents including data collection agents, coordinator agents and mediator agents. This paper describes the proposed agent-based architecture of the Aviation Data Integration System (ADIS).